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A generating basis and the dual cone of n-convex functions satisfying certain con
straints are derived. As applications, the existence and characterization of a best
Lf-approximation (I ~ p < ex) from such subcones to a function in L

f
are estab

lished. The relationship between a best L I -approximation and perfect splines is
developed under certain conditions. I. 1995 Academic Press. Inc.

INTRODUCTION

Recently, there has been considerable interest in best Lp-approximation,
1~p< C/J, by n-convex functions (e.g., [8, 12,30,34, 27J). In this article,
we consider a constrained L p -approximation problem in which the
approximating set is a convex subcone of n-convex functions determined by
certain constraints. This problem was seen to arise naturally when one con
siders best constrained approximation (see [2J or [3J), which in turn
arises from smoothing and interpolation problems (see, e.g., [4, 16J).
A main problem of [3 J, for example, was to characterize best constrained
approximations to elements x in a Hilbert space X from the set
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where C is a closed convex cone in X, A is a bounded linear operator from
X into a Hilbert space Y, and bEY. It was seen there that this problem
reduced to the generally simpler problem of determining best approxima
tions to a perturbation of x from a certain subcone of the cone C. In the
important cases when the cone C is the cone of positive functions, the
increasing functions, the convex functions, or, more generally, the cone of
n-convex functions, it was seen in [3] that the subcones that arise are
precisely of the form that we consider in this paper (in the more general
framework of the Lp-space). We establish the existence of a best
Lp-approximation and its characterization by first determining a gene
rating basis and then the dual cone of the subcone. This approach, based
on duality, leads to simplicity of both methods and results, and par
ticularly, a simple proof for the characterization of a best approximation.
We consider L2 -approximation by nondecreasing functions, a special case
of the above problem, in some detail and extend an earlier result of [21 ].
We also explore the relationship between a best L,-approximation from
the subcone and perfect splines.

Let X be a real normed linear space and X* its topological dual with its
usual norm. Let K c X be a closed convex cone, i.e., a closed subset of X
which satisfies the condition that )/+ f.lh E K whenever f, hE K, A~ 0 and
f.l ~ O. Given fE X, let

PK(f) = {g E K: 11/- gil = inf{ III- kll :k E K} },

where 11·11 is the norm on X. P K (f) is called the set of best approximations
to I from K. Define the dual (or polar, or conjugate) cone KO of K by

KO= {X*EX* :x*(k)~OforallkEK}.

The dual cone plays a significant role in the characterization of a best
approximation as follows.

THEOREM 1.1. Let IE X\.K and g E K. Then g E P K (f) if and only !f

KO ng -C n D(f-g)#0,

where g-C = {X*EX*: x*(g)=O} and

D(h) = {x* E X* : Ilx*11 = 1, x*(h) = Ilhll},

This result is a special case of a general characterization of best approxima
tions from any convex set established independently in [5,24]. (See [26,
p. 362] for an accessible reference to these papers. See also [6, 32, 35] for
further results on duality.) For A c X, we denote by cc(A) the smallest con
vex cone containing A or, equivalently, the set of all non-negative linear
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combinations of elements of A. We denote by cc(A) the smallest closed
convex cone containing A. Since the closure of a cone is a cone, this is the
closure of cc(A). A proper subset M of K is called a generating basis for
Kif K = cc(M).

In this article, we let X = L,,(I), 11·11 = 11,11 /" I ~p <:Xl, where 1= [a, bJ
is a compact real interval with Legesgue measure, and let K = Kn,,,(S),
n ~ I, be the convex subcone of the n-convex functions in L p , to be defined
below. In Section 2, we find a generating basis for K and characterize the
dual cone f<'J. These results are derived from earlier known work on
generalized convex functions induced by Extended Tchebycheff systems,
also called the ET systems [9,10]. In Section 3, we use the results of [34J
to establish the existence of a best Lp-approximation from K. Using
the results of Section 2, we obtain a characterization of a best
Lp-approximation in Section 4. In Section 5, we consider the case of
I-convex (i.e., nondecreasing) functions with p = 2, and extend a charac
terization of a best approximation to a bounded function [21 J to any func
tion in L 2 , In Section 6, under certain conditions, we characterize the
unique best L, -approximation by n-convex functions in terms of a unique
perfect spline.

We now present the notation and terminology used in this article in
detail. We first state the following two equivalent definitions of a real
function k which is n-convex on an interval J c I, where n ~ I; additional
definitions appear in [22].

(I) For all n + 1 points So < .1'1 < ... < .1'" in J, the nth order divided
difference [so, .1'" .. , s/1Jk of k is nonnegative.

(2) For all n points '\'1 <.1'2< '" <,\'"inJ,(-I)"+i+1 (P(s)-k(s))~O

for all s in (Si' Si+ I)' 0 ~ i ~ fl, where P(s) is the unique Lagrange inter
polating polynomial of degree at most (fl - 1) passing through the points
(Si, k(sJ), 1~ i ~ n, and So and Sn + I are the left and right endpoints of J.

It is known that a function k which is n-convex on J = (a, b) has at most
fl monotone segments. This result may be derived from [20J (or see [34,
p. 236, property (2) J); it is extended to generalized convex functions in
[ 12]. Hence, k is monotone on the intervals (a, a + /;) and (b - e, b) for
some e>O. Consequently, we let k(a)=k(a+) and k(b)=k(b-), where
these limits may be ±x. We let K,,, n ~ 1, denote the set of all functions
on I which are n-convex on (a, b) and are so extended to the endpoints. We
point out that the functions which are n-convex on I are a proper subset
of Kn ; the former, by definition, are necessarily finite at the endpoints of I.
A best approximation to an IE Lp may not exist from the former class, but
always exists from K/1 [34].

Let 11
K

denote the Lebesgue-Stieltjes complete measure generated on
(a, b) by a real nondecreasing and possibly unbounded function g on (a, b),
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which is not necessarily right continuous. Then, for each Borel set A c

(a, h), we have

and Ill< is the completion of this measure on the Borel sets [17]. Let
Sc(a,h) be any Borel set and S'=(a,h)\S. For kEK", let kj; I) denote
the right continuous nondecreasing right derivative of the (n - 2 )nd
derivative of k defined on (a, h), where kfJil(t) = k R(t) = k(t+). (See Section
2 for the justification of the existence of these derivatives.) Let Ilk,,, = Ilk~ II,

i.e., Ilk." denote the Lebesgue-Stieltjes measure generated by kj;- I) on
(a, h). Note that Ilk, I' which is generated by k R, is identical to Ilk' which
is generated by k [17, p. 160, Proposition 3.9]. Define

In particular, since f.1k.l = Ilk' we have KI(S) = {k E K I : Ilk(S') = O}. Note
that each k in K" generates a distinct Ilk,,, and an associated sigma-field.
However, S' is measurable relative to each Ilk." since it is a Borel set; thus
K,,(S) is well defined. It is a convex subcone of K". Clearly, K" = K,,«(a, h)),
and K n (0) is the set of all polynomials of degree at most n - 1 on 1. In
addition, if S=Jl={t 1 <t 2 <· .. <tm}, then K,.(Jl) is the set of all
n-convex splines of degree at most n - 1 with simple knots at t i' Thus, this
framework covers several important cases of interest.

We define

K",,.,(S) = Kn(S) n LIn I ~p< ex,

where L p = Lp(I). This is a cone (a subcone of K,,(S) and hence of K n ) in
L p from which we seek best approximations. When Si= (a, h), Kn(S) is a
proper "constrained" subcone of K". Such sets arose naturally, but
implicitly, in the study of constrained approximation in [15, 16] for n = I,
and explicitly in [2,3] for n= 1, 2. In this notation, (Kn.p(S))o is the dual
cone of Kn,p(S) in L;. For brevity, we let Kn,p = Kn,,.,((a, h)) = K" n L,." and
K~.p its dual cone.

We brietly review some related literature. If/ELI" 1 <P<w, then the
existence of the unique best approximation follows since K",l' is closed and
convex [34, Theorem 3.1] and L,., is uniformly convex. In L j , the existence
follows by the same theorem in [34] or by [II]. We observe that I-convex
and 2-convex functions are, respectively, the nondecreasing and convex
functions. More complex cases of n-convex functions occur for n ~ 3. There
is much literature on Ll'-approximation by unconstrained n-convex func
tions, particularly for n = I, For characterization and properties of best
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approximants see [11,27,29-31,37] and other references given there. Best
constrained approximation in Hilbert spaces was investigated in [2, 3, 16].
Constrained approximation by nonnegative functions in Lf' spaces was
investigated in [15]. Certain interesting relationships between best
LI-approximation from the linear space of splines and perfect splines were
obtained in [13, 28].

2. PRELIMINARIES

In this section we obtain several preliminary results on n-convex func
tions and Lebesgue-Stieltjes measures. These results are needed in the
analysis to follow.

We first state some basic facts about n-convexity. Let kill denote the ith
derivative of a function k, where k lOI = k.

LEMMA 2.1. Let n ~ I and k E K".

(1) Every function in K", n ~ 2, is continuous on (a, b) [1].

(2) kill exists on (a, h) and klliE K" I' 1:( i:(n- 2 [I, Corollary IS].

(3) kl" 21 is convex on (a, b).

(4) The left (resp., right) derivative kt' I) (resp., k~"I') of kl" 21

exists on (a, b), is nondecreasing, and is left (resp., right) continuous
[22,23 ].

(5) kt' 1 J = k~" I) a.e., and, hence, kl" II exists a.e. on (a, b).

LEMMA 2.2. Let k he a real nondecreasing and possihly unbounded junc
tion on (a, b) (i.e., k E K 1 ). rf 11 = Ilk is the Lebesgue-Stieltjes measure
generated hy k on (a, h) (as in Section 1), then, for any choice of c < d in
(a, h), the following hold [17].

(1) ,u{c}=k(c+)-k(c-).

(2) ,u(c, d)=k(d- )-k(c+).

(3) tL[c,d]=k(d+)-k(c-).

(4) ,u[c,d]=k(d-)-k(c-).

(5) ,u(c,dJ=k(d+)-k(c+).

Following the usual conventions, let a + = max {a, 0 }, a _ = a + - a =
max{-a,O}, (s-t)'~ 1=((.1'_/)+)",1 and (S-/)"'I=«(S-t)_)"·1 for
n ~ 2. Also define
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(5 - t)~ = 0, if 5 < t,

= 1, if s~ t,

(s-t)~=I, if 5< t,

=0, if s~ t.

These functions will be used in this and the next section.
Let kEK,,(S) and 0<<5«h-a)j2. For O<e<<5, define as in [10,

p. 391], p(·;e)=pk(·;f:) by

p(t;e)=k~' II(a+e), if tE(a,a+e),

=k~- II(t), if t E [a + e, b - e),

=k~'-I)(h-e), if t E [h - e, h). (2.1 )

Recall that if kEK1(S), then k~)(t)=kR(t)=k(t+).Also define

[

h ,,-1 JI
k(t; e) = t (t - x)".- I dp(x; e) + i~O ai(e) t

i
./ (n -1 )!,

=p(t;e),

if n?:: 2,

if n = 1, (2.2)

where numbers aile) are chosen so that k(·;e)=k on (a+c,b-e). The
following lemmas collect some useful properties of the function k(·, e)
which playa significant role in our later developments. Recall from Section
I that if k E K", then fik." is the measure generated by k~'- II and fik.l = fik'

LEMMA 2.3. Let k E K,,(S), n?:: 1, and 0 < <5 < (h - a)j2. For 0 < e < b, let
p(',e) and k(·;e) be defined by (2.1) and (2.2). Also, let fi be the
Lebesgue-Stieltjes measure generated by p( .; e). Then (1 H 6) below hold for
n ?:: 2. If n = 1, then (l )-(4) hold verbatim; (5) and (6) hold with the function
k there replaced by k R'

(1) p(S') = O.

(2) p is the measure generated by k~ - 1 l( .; e).

(3) klil(a+;e), kIi1(h-;e) for O~i~n-2, and k~'-Il(a+;e) and
k~' II(h_; e) exist and are[inite.

(4) k(·;e)EK".p(S), l~p<oc.

(5) k(.;[;)=k on (a+[;,b-[;), k(·;[;)~k on [b-[;,b), and
( - 1)" k( .; [;) ~ ( - I )" k on (a, a + [;].

(6) For each fixed tin (a,a+o) (resp., (b-b,b)), k(t;e) (resp.,
( - 1)" k( t; [;)) is a nonincreasing function of e for 0 < e < o. Furthermore,
k(·;e)ik on (h-o,h), (-I)"k(·;e)i(-I)"k on (a,a+o), as e10.
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Proof To show (I), we use the right continuity of p( .; [;) and its con
tinuity at a+D. Suppose n~2. Then p(';C)=k~' 1) on (a+C,h-D]=J,
say, which gives 11= /lk,1/ on J (i,e" for measurable subsets of J). Since
k E KI/(S), we have /lk,,,(S' n J) = 0 and hence /I(S' n J) = O. If n = 1, then
p(';I:)=k R on (a+c,h-£], which gives /I=11kR=jJ.k on 1. Hence,
as before, /I(S'nJ)=O. Now for all n~l, we have /I(a,a+c]=
/I(h - D, h) = O. We conclude that jJ.(S') = 0, which is (I).

To prove the remaining parts, we apply [10, Chap. XI, Theorem 2.3]
with Wi == 1 and 11 replaced by n - I. Suppose n ~ 2. We differentiate (2.2)
11 - 1 times as justified in [10, p. 392] and obtain

h

k~ 11(/;£)=! (t-x)(~dp(x;£)+a"_l(c)
1/

= p(t; £) - p(a+; c) + a,,_ dl;), (2.3)

by the right continuity of p(.; £). Thus k~ -1 1(.; r.) and p(.; r.) differ by a
constant and (2) follows. To show (3) we observe that p(.; [;) is non
decreasing and bounded. Hence, again by (2.3), we conclude that
k ~'- 11(a + ; £) and k ~ - I1(h+ ; £) exist and are finite. It follows that
kU1(a +; £) and kU1(h -; £) exist and are finite for 0 ~ i ~ n - 2. If n = I, then
(2) and (3) follow immediately. By (3), k(·; c) is bounded and, hence, in
L p • Now, by the theorem in [10] cited above, and (l) and (2), we con
clude that (4) holds; again (5) and (6) hold by the same theorem. The
proof is complete.

LEMMA 2.4. Let k E K",p(S), n ~ 1 and 1 ~p < CfJ. Then

(l) Ilk(.; £) - kill' -+ 0 as e! 0,

(2) J~ k(-, £)h -+ J~ kh as e! 0 jar all hE L q , where lip + llq = 1.

Proof Suppose n ~ 2. By Lemma 2.3(5), for 0 < £ < b we have
Ik-k(';£)I~lk-k(-;b)IELI" By Lemma 2.3(6), k(-;£)-+k pointwise as
e to. Hence, by the bounded convergence theorem [7], we conclude that
(1) holds. For n = 1, since k = k R a.e., by the same argument (l) holds.
Now (2) follows immediately from (l) by an application of Holder's
inequality [7]. The proof is complete.

A family F of real functions is said to be equi-Lipschitzian on a compact
subinterval J of (a, h) if I/(s)- 1(/)1 ~c Is- tl holds for alliin F, all s, t
in J, and some c > O. Parts of Theorem 2.5, below, are extensions of similar
results for convex functions [23, Sect. 10]; others are contained in [34].
Results similar to parts (1) and (3) appeared in [36]. It was shown in [12]
that Theorem 2.5 is also true in a more general framework of generalized
convex functions relative to a nonlinear family under certain conditions.
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THEOREM 2.5. Let n~2, 1~p~ OC, and (k j ) be a sequence in K".

(t) If a sequence in K" converges pointwise to some real function k,
then k is in K" and the convergence is uniform on every compact suhinterval
of (a, h).

(2) If (ilk/lip) is hounded, then (k,) is pointwise hounded on (a, h).

(3) If (k,) is pointll'l~fe hounded on (a, h), then (k) is equi-Lipschitzian
on every compact subinterval of (a, b) and (k,) contains a subsequence which
converges pointwise on (a, h) to some function in K".

PROPOSITION 2.6. Let (k,) be a sequence in K,P n ~ 2, such that k, -.. k
pointwise on (a, b) for some kin K". Then kjil-..k 1il pointwise on (a,b)
uniformly on every compact subinterval J of (a, b) for all 0 ~ i ~ n - 2. (For
the case i = n - 1 see the remark following the proof below.)

Proof We first establish the result for i = 1 when n ~ 3; it holds for i = 0
by hypothesis and Theorem 2.5(1). Let (g,) be any subsequence of (ki I)).
We show that this in turn contains a subsequence converging pointwise to
kill uniformly on every J. This will prove the assertion. Since (k,) is
pointwise bounded on (a, b), by Theorem 2.5, there exists c > 0 such that
Ik,(s)-k,(t)1 ~c Is-tl for s, tin J. Consequently, Iky)(s)1 ~c for s in J.
Thus ki I I is pointwise bounded on (a, b). Since ki II E K" _ I' by Theorem
2.5, (k)'I) contains a convergent subsequence. Hence, assume that g, itself
is convergent to some g in K" _ I' We show that g = kill. Let (h) be the
subsequence of (k,) such that gj=hi l

). Let tE(a,b) and let J'=[u,v]c:
(a, b) with u < s < t < v. Then since hj is Lipschitzian and, hence, absolutely
continuous on J', we have hj(t) = t hi!) + h,(s). Since Ihi!)1 ~ c' for all} for
some c' > 0, using the bounded convergence theorem and passing to limits,
we obtain k(t) = t g + k(s). Since kill and g are continuous, we have
k(')=g on J' and, hence, on (a, b). By Theorem 2.5(1), kill converges to
k( J) uniformly on J. Now since k) I) is in K,,_ I, we apply the same argument
to prove the assertion for (k?I), etc. The proof is complete.

Note that kj" - J I is the derivative of the convex function ki" - 2 1• Its con
vergence is covered in [23, Theorem 25.7]. Recall from Section I that
gR(t)=g(t+). We define gdt)=g(t-).

LEMMA 2.7. Let g, kE K , and g=k a.e. on (a, h). Then the following
hold.

( I) g R = k Rand g L = kLan (a, b).

(2) The sets of discontinuities of g and k are identical.

(3) g and k generate identical Lebesgue-Stieltjes measures on (a, h).
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Proof ( 1) Let E be the set of continuity points of both g and k. Since
a real nondecreasing function (possibly unbounded) has countable discon
tinuities, we have J.( E') = 0, where E' = (a, b )\E and I- is the Lebesgue
measure. Since g = k a.e., g = k on E. Now suppose that sEE'. Then since
i(E') = 0, given 15 > 0 there exists tEE with s < t < s + 15 so that g(t) = k(t).
It follows that g(s+) = k(s+). Similarly, g(s-) = k(s-). This gives (1).
Since g is discontinuous at s if and only if g(s + )- g(s - ) > 0, (2) is estab
lished. Now g and gR generate the same measure on (a, b) [17, Proposition
3.9]. Hence (3) follows from (2). The proof is complete.

LEMMA 2.8. Let (k j ) be a sequence in K , such that k j -"> k pointwise on
(a, b) for some k in K 1 • Let Ilj and 11 be the Lebesgue-Stieltjes measures
generated by k j and k on (a, b). Let c < £I in (a, b) be any two points of con
tinuity of k. Then,

(I) kj(c+)-">k(c) andkj(c-)-">k(c);

(2) Il)c, d) -"> p(c, d).

Prool Let e>O. There exists N>O such that k(c)-e~k,(c)~kj(c+)
for j?; N. Hence k( c) ~ lim inf k j(c + ). Now let s> c. Then there exists N> 0
such that kj(c+ )~kj(s)~k(s)+efor j?;N. Hence lim supkj(c+ )~k(s).

By continuity we have lim sup k j(c + )~ k( c). This shows that k j (c + ) -">

k(c). Similarly, we have kj(c-) -"> k(c), and (I) is established. Part (2)
follows from Lemma 2.2(2) applied to k j and k. The proof is complete.

The following slight generalization of Helly's selection theorem [18,
p. 221, Lemma 2] is needed for our purpose.

LEMMA 2.9. Let (k) be a sequence in K I which is bounded uniformly in
j on every compact subset of (a, b). Then there exists a subsequence lvhich
converges pointll'ise on (a, b) to a function in K, which is bounded on every
compact subset of (a, b).

Prool Let 0 < c; < (b - a )/2 and 1m = [a + c;/m, b - c;/m]. By Helly's
theorem, there exists a subsequence (gl,) of (kj ) which converges at every
point of II' Again, by the same theorem, there exists a subsequence (g2. j)
of (g I.) which converges at every point of 12, Repeating this argument for
each 1m , we finally let (gj) = (gj.), the diagonal sequence which converges.
Clearly, the limit function is in K I and is bounded on every compact subset
of (a, b). The proof is complete.
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3. GENERATING BASIS FOR Kn.p(S) AND EXISTENCE OF BEST ApPROXIMATIONS

In this section we obtain a generating basis for Kn(S) and Kn.p(S) from
earlier known results [9, 10], and establish the existence of a best
approximation from K",p(S).

The following set of functions, M ,,(S) or M~(S), of the variable s will be
shown to generate Kn,p(S), n~ 1, if S is (relatively) closed in (a, h).

Mn(S) = {±s': 0 ~ i ~ n - 1} v {(s - t):- 1 : t E S},

M;,(S) = { ±Si : 0 ~ i ~ n -l} v {( -1)" (s - t)"- l : t E S}.

Note that (s - t)~ and (s - t)~ are right continuous.
We collect a few more facts for ease of reference.

LEMMA 3.1. (1) k E Kn, n ~ 1, if and on(v if it is the (n - 1)st indefinite
integral of a nondecreasing function [1, Corollary 8(a)].

(2) k(s)=(S-t)'~-l (resp., (-I)"(S-t)~~l isn-convex.

(3) Ifk(s)=(s-t): 1, then k~-l)(s)=(n-l)! (s-t)~, and J1.k,n is
zero on (a, t)v (t,h). Hence kEKn(S) if tES.

(4) siEKn(S),O~i~n-1.

(5) Mn(S) c Kn,p(S) and M;,(S) c Kn,p(S), I ~p < 00.

Proof (2) This follows from (I) since (s - t)'~- 1 (resp., ( - 1 )n (s - t)'~- 1)
is the (n - 1)st indefinite integral of the nondecreasing function
(n - I)! (s - t)~ (resp., - (n - I)! (5 - t)~) plus a polynomial of degree at
most n - 2.

(3) This is clear.

(4) The (n - 1)st derivative of k(5) = 51, 0 ~ i ~ n - 1, is constant so
that J1.k,n = O. Thus k E Kn(S).

(5) By (3) and (4) we have Mn(S)cKn(S). Since functions in Mn(S)
are bounded, we have Mn(S) c L p, and the first inclusion in (5) follows.
A similar proof establishes the second inclusion.

The proof is complete.

Let Sn denote the set of all polynomial spline functions of degree II - 1
with a finite number of simple variable knots in (a, h) [25]. It is then easy
to see that Mn=Mn«a,h))cSn and Sn is spanned by M l1 v{-Mn}.
Similar results hold for M;, = M;,( (a, h)). Recall that if A c Lp, then cCp(A)
denotes the closure of cc(A) in L p.

THEOREM 3.2. Kn,p(S)cccp(Mn(S))=ccp(M~(S)) for all ll~l and
1~p< x'.

64080 2,5
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Proof Clearly, (-I)"(s-t)"- '+(s-t)" '=(.1'-1)",..' for all n~1.

Hence, cc(M,,(S)) = cc(M;,(S)) and cCp(M,,(S)) = cCp(M;,(S)). Now let
kEK".p(S) and 0<b«b-a)/2. For O<s<b, construct k(·;s) as in
(2.2). Then by Lemma 2.3(4), k(·;S)EK".p(S), and by Lemma 2.4(1),
IIk(-;s)-kllp~O as dO. Let II be the measure generated by p(·;s) on
(a, b). First suppose that n~2. Letf(t)=fs(t-x)'~-Idp(x;s),tE (a, b).
Note that p( .; s) is bounded, and the family F = {( t - X)'~ 1 : t E I} of func
tions of the variable x, is equi-continuous on I, i.e., given e> 0 there exists
15>0 such that If(x)-f(y)1 <e whenever Ix-yl <15 for allfEF. Let a=
XO<X 1 < ... <Xm +' =b be a partition of (a, b) such that X,-X'_l <<5 for
I :S i:s m + 1. For convenience of notation, let p(b; s) = p(b-; s) and c =
p(b-;s)-p(a+;s). Since fl(5') =0, by the right continuity of p(·;s), we
have fl((Xj_1,x,]nS)=fl(x j I,X,]=P(x,;s)-P(X'_I;S)=A" say. Then
A,~O. Let D={I:Si~m+l :;'i>O}. If iED then (Xi l,xJnS~0.

Now choose yjE(X/ "x,]nS arbitrarily for iED, and define g(t)=
LjEIJ(t-y,)'~-'Ai' Then, by construction, If(s)-g(s)I~()c for all .I' in
(a,b) since L'EIJ)'/=C. Clearly, gEcc(Mll(S)), and hence,fEccp(Mp(S)).
We conclude that k(-;s) is in cCp(M,,(S)). Thus kECCp(M,,(S)) and the
result is established for n ~ 2.

Now suppose that n = I and, for convenience, let f= k( .; s) and () > O.
Then fE K,.p(S). Note that f is bounded and right continuous. Let} be the
smallest integer with} + I ~ (f(h) -f(a))/8. Let Ii = {SE I: f(s) ~f(a)+ W},
O:s i:s j. Since f is right continuous, I, has the form [Sj, b), where
a= so:Ss, ~ ... ~si+ 1 = h. Let a=xo < x, < ... <xm+' = h be all distinct
elements among S,. (Iff has a jump at a point t then some of the Si may
be identical to t.) Then f(x i_ d<f(x) for I ~i~m. Now, as before,
j1((x i _"x,]nS)=f(x,)-f(x j__ I»O for I ~i:Sm. Define y,ES with
a=Yo<YI<'" <Ym+,=b as follows. If fl{x,}=f(x,)-f(x j- »0 for
I :S i ~ m then Xi E S, and let Yi = Xi' Otherwise, if f(x i ) = f(x ,-), choose
.v, arbitrarily in (x j _ " x,] n S, which is nonempty since its fl-measure
is positive. Now define g(s)=f(a)+L7~,(f(Yj)-f(Yi-d)(s-y,)~,

Then gEcc(M,(S)) and, by construction, If(s)-g(s)I~28 for sE(a,b).
Hence, fECCp(Ml(S)), Consequently, by Lemma 2.4(1), kECCp(M1(S))
establishing the result for n = 1. The proof is complete.

PROPOSITION 3.3. Let n ~ I and I ~p < CfJ. Assume that S is not
(relatively) closed in (a, h). Then cCp(M"(S))\K,,.p(S) is not empty.

Proof There exist t E (a, b )\S and a sequence (tJ in S such that t j ~ t.
Define kj(s) = (s-t)",.. 1 and k(s)=(s-t)'~-'. Clearly, kjEM,,(S), and
kj~ k a.e. on (a, b). Since kj and k are bounded by (b - ar - I, using the
dominated convergence theorem [7], we have Ilk j - kll p -+ O. Thus
kECCp(Mll(S)). Let fl be the Lebesgue-Stieltjes measure generated by
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k\{' 1)(S)= (n-l)! (s- t)~. Then ,u{t} = (n-l)! oF 0, and k¢:. K",p(S). The
proof is complete.

Let H denote the set of all extended real-valued functions on I. For
Pc H we define P to be the set of all functions f in H such that fj -> f
pointwise on (a, b) for some sequence (fj) in P. Such sets find applications
i!l proving the existence of a best approximation [12, 34]. The definition of
P given here is as in [12] but weaker than the one in [34]; however, it will
be seen that all the results of [34] hold with this change. The following
results from [34] will be used in our proofs.

THEOREM 3.4. (I) K".p = K" n L p = K" n L p.

[2] If PcKn is nonemptJ' with PnLp=PnLp, then PnLp is
proximinal in L p. In particular, K".p is proximinal in L p.

Now we state the main result of this section.

THEOREM 3.5. Let 1~p < (X). The following statements are equivalent.

(l) S is (relatively) closed in (a, b).

(2) If (k j ) is a sequence in Kn(S), n ~ 1, such that k, converges
pointwise to a real function k on (a, b), then k E KIl(S).

(3) Kn.p(S) = K,,(S) n L p = KIl(S) n L p.

(4) KIl.p(S) is proximinal in L p, n~ 1. (Hence KIl,p(S), 1 <p< OC, is
Chebychev. )

(5) K".p(S) is closed in L p, n ~ l.

(6) K",p(S) = cCp(MIl(S)) = cCp(M~(S)), n ~ 1.

Proof (1)=>(2) Let (k j) and k be as in (2). Then kjEK" and hence
k E Kw By Proposition 2.6, k(n - 21 -> k(" - 21 pointwise on (a, b). Again, by
Theorem 2.5, the sequence (k}"" 2)) of convex functions is equi-Lipschitzian
on compact subsets of (a, b). Hence, the sequence (gj = k;."R I)) of non
decreasing functions is bounded on compact subsets of (a, b). By Lemma
2.9, there exists a subsequence of (g) converging to some g in K] on (a, b).
Assume, for convenience, that (gj) itself converges to g. Now let E be the
subset of (a,b) on which kl,,·I) exists, i.e., k\:-I)=ki"-l) holds. Then
).«(a,b)\E)=O, where i. is the Lebesgue measure on (a,b) [22]. By a
known result, e.g., [23, Theorem 25.7], we conclude that gj(s) -> k\{' - I ItS)
for sEE. It follows that k~'- II = g a.e. Let fLj' fL, and fL' be the
Lesbesgue-Stieltjes measures generated by g" g, and k ~' - 1), respectively.
Then, by Lemma 2.7, we have ,u = ,u'. Let (u, v) be a component (maximal
open subinterval) of the open set S' = (a, b)\8. Since g E K l' we can find
sequences (c i ) and (d;) of continuity points of g such that u < C i < d i < v and
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C i 1U, d i i v. Then /lj(c" d i ) ~ /lj(u, v) = O. Letting j -> Xi, by Lemma 2.8, we
obtain IJ.(c i , d i ) = 0 for all i, which gives IJ.'(u, v) = /l(u, v) = O. Thus
/l'(S') = 0 and k E K,,(S).

(2) => (3) Clearly K",p(S) c K,,(S}nLp. Suppose now that kEK,,(S)nLp.
Then there exists a sequence (kJ in K,,(S) such that kj -> k pointwise on
(a, b). Since K,,(S) n L p C K" n L p = K" n L p by Proposition 3.3, we con
clude that kEK" and, hence, is real-valued on (a, h). By (2), kEK,,(S).

(3)=(4) This follows by Theorem 3.4 with P=K,,(S).

(4) = (5) Proximality implies cIosedness.

(5)=>(6) Since K",I'(S) is closed in L p, we have K",p(S)::J
cCp(M,,(S)).

The converse follows by Theorem 3.2.

(6) = (1) This follows by Proposition 3.3.

The proof is complete.

4. CHARACTERIZATION OF (K".p(S))O AND BEST Lp-ApPROXIMATION

BY K"jS)

In this section we apply the results of Section 2 to characterize the dual
cone (K"jS))o and a best approximation to fin L p from K".p(S).

For hELl' we define

h[O] = h, h[iJ(s) =rh[l-ll(t) dt,
a

S E [a, b), i ~ l.

Thus hfiJ(a) = 0, for i ~ 1. Note that L:, 1~p < Xi, is identified with L q,
where q=p/(p-l) if p> 1, and q= Xi if p= 1.

THEOREM 4.1. For n~l, l~p<oc, and all Sc(a,b), the following
hold.

(1) (K".p(S))O = (M,,(S))O = (M~(S))o.

(2) (K",p(S})o={hELq:h[l](b)=O, l~i~n, and (-I)"h["](t)~O,

tE S}.

Proof (1) By Theorem 3.2, we have M,,(S) c K",p(S) c cCp(M,,(S)).
Hence (M,,(S))°::J (K",p(S))°::J (ccp(M,,(S)))o. Since (M,,(S))o= (cciM,,(S)))o,
as may be easily verified, the result follows,

(2) Suppose first that hE (K"jS))o. Then, by (1), f~hk~O for all
k E M ,,(S). We first prove that h[i](b) = 0 for 1~ i ~ n, We proceed by
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induction on i. Substituting k(s) = ±1 in J~ hk:%; 0, we at once obtain
hfIJ(b)=O. Next assume that h[I](b)=O for I:%;i:%;m, where m:%;n-l.
Then, since hELl and k(s)= ±sm is in MII(S), we integrate by parts to
obtain

o= r.I'mh(s ) ds
a

= [snlh[I](s)t-mrsnl-1hfJ](s)ds
a

h

= -m f sm-Ihfl](s) ds.
a

Hence, J~snl-lh[I](s)ds=O. Applying the above step successively, we
obtain S~sOh[ml(s)ds=O, which gives IJEm+l](b)=O. Hence h[I](b)=O,
I:%; i ~ n. Again, substituting k(s) = (s -/)'~ I with IE S in S~ hk ~ 0 and
integrating by parts, we may easily verify that

f
h h

0): (s- t):- 1h(5) dr= f (S-I),,-I h(5) dr= (-1)" (n -I)! h[II](t).
a I

This gives (-1)" h[II](t) ~ 0, t E S.
Conversely, if hE L q and satisfies h [i](b) = 0 for I:%; i:%; n, and

( - I )" hf"]( t) :%; 0 for t E S, then we may show as above that S~ hk :%; 0 for all
kEMII(S). Thus hE (K".p(S))o and the proof is complete.

Next we obtain one preliminary result needed for characterization of a best
approximation.

LEMMA 4.2. Assume gE KlljS), and let p/:(.; <:) and g(.; <:) be as defined
by (2.1) and (2.2)for this g. Also, let hE L q , ll'here 1~P <x, lip + llq = 1,
and h[i](a)=h[i](b)=O, O:%;i:%;ll. Then,for n): 1,

Proof Suppose first that n): 2. By Lemma 2.3(4), g(.; e) E K".p( S).
Hence, g(i)(.; <:) is obtained by successive indefinite integrations of
g~'- 1l( .; <:). By Lemma 2.3(3), we conclude that gli)( .; <:), O:%; i:%; n - 2, is
bounded on (a, b); it is also absolutely continuous since it is an indefinite
integral. Again, h[I], i): 1, is absolutely continuous on I. Problem 3.3.6 of
[17, p. 166] as extended to the Lebesgue-Stieltjes signed measure
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generated by g(.;e) gives us S:MI]dg(.;e)=S:h[J]g(l)(.;e). Similarly,
J~g(.;e)dh[I]=J~hg(.;e). By [7, Theorem 1I1.6.22J, we have

h hf hg(·; e) = f g(.; e) dh[l]
a a

= h[I](h-) g(h-; e) - h[J](a+) g(a+; e) - f h P ] dg(·; e)
la.h)

= - rh[l]glll(.; e).
a

The above argument applied successively gives

=(-lr- 1rh[n-I]g\;-l)(.;e),
a

since gin - II( .; e) = g~1 - I I( .; e) a.e. Again, arguing as above we obtain
S~ hg(-; e) = (- 1)" La.h) h [11] dg~' II( .; e). Now, by definition, p( .; e) is con
stant on (a,a+eJ and (b-e,b), continuous at a+e, and p(.;e)=g~1 I)

on (a+e,h-e]. As in the proof of (2.3), g~ll)(.; )=p(·;e)+c=
g~1 - I) + C on (a + e, h - F- J for some constant c depending on F-. Hence,

f h[n]dg<; 11(';F-)=f h[1I]dg~'-1\(.;e)
la,hl (a+l:.h 1:]

The required result is established for n ~ 2. If n = 1, then the result may be
derived as above by using the results on integration by parts. The proof is
complete.

As was observed before, if X = Lp , I ",:;,p < 00, then X* is identified with
L q. Hence, if 1<p<00, then Dp(f)=(lfl/llfllp)P-lsgn(f)ELq, where
q=pl(p-l), and

D I (f) = {h : Ilhil CD = I, h = sgn(f) a.e. where f # O} cLew

We observe that e and E in Theorem 4.3, below, depend upon g; in fact
they are uniquely determined by f - g. This, however, is not the case in
Theorem 4.5. For simplicity of notation, we suppress any dependence.
Similar remarks apply to other characterization theorems in subsequent
sections.
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THEOREM 4.3. Let I <P<C/J, n~l, Sc(a,b), K=Kn,p(S), fELp\K,
gE K, and e = If - gl p -I sgnU- g). Define

E= {tE (a, b): (-I)" e[n](t) <O}.

Then the following four statements are equivalent.

(4.1 )

(I) g=PKU)·

(2) (i) e[i](b)=Ofor l~i~nand(-I)"e[nl(t)~O,tEs.

(ii) J~eg=O.

(3) Condition (2)(i) holds, and g is a po~rnomial of degree at most
n - I on each of the components ( = maximal open subintervals) of the open
set E.

(4) Condition (2)(i) holds, and g is a polynomial of degree at most
n - I on each of the components oj E which contains an element of S.

Proof The equivalence of (I) and (2) follows immediately from
Theorems 1.1 and 4.1.

Let n ~ 2. For convenience, let l(s, t) = (_I)n L,.. I] ern] dg~' - 1\ where
a ~ s < t < b. Suppose now that (2) holds and (c, d) is a component of E.
Let s,tE(c,d) and O<£<min{s-a,b-t}. Then a+£<s<t<b-£.
Since /t1t,n(S') = 0 and ( - I )" ern] ~ 0 on S, we have l(a + £, b - £) ~ l(s, t) ~ O.
By Lemma 4.2 with h = e, we obtain J~ eg(·; £) = l(a + £, b - £) ~1(s, t) ~ O.
Using Lemma 2.4(2) and letting £ lOwe find that 0 = eeg = l(s, t). Since
(-I)"e[n1<o on (s,t], we conclude that /tg)s,t]=g~'-I)(t)

gkn - LI(S) = O. Hence gkn - I) is constant on [s, t]. Since s, t are arbitrary,
gi; - I) is constant on (c, d). Thus (3) holds for n ~ 2. If n = I, we define
l(s, t) = (- 1)" L,.,] ern] dg R and argue as above to conclude that (3) holds.
Clearly, (3) implies (4).

Now suppose that (4) holds. If (c, d) is a component of E such
that (c, d) (1 S # 0, then /tlt,n(c, d) = O. Hence, /tg,n(S (1 E) = O. Again,
/tg,n(S')=O and e[n](t)=O for t in S\E. Hence, l(a+£,b-£)=O for all
0< £( b - a )/2. By Lemma 4.2 with h = e, we have f~ eg( .; £) = O. Again, by
Lemma 2.4, letting £ lOwe conclude that J~ eg = O. Thus (2) holds. The
proof is complete.

If p = 2, then the above theorem takes the following simpler form. Its
proof is straightforward since e = J - g, as may be easily seen.

COROLLARY 4.4. Let n;?; I, S c (a, b), K = Kn.2 , JE L 2\K, g E K, and

Then the following three statements are equivalent.
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(1 ) g = P K ( (f).

(2) (i) f[;J(b)=g[T](b)forl ~i~nand(-I)llf[IlJ(t)~(-lrg[IlJ(t),

t E S.

(ii) g is a polynomial of degree at most n -Ion each of the
components ( = maximal open subintervals) of the open set E.

(3) Condition (2)(i) holds, and g is a polynomial of degree at most
n - 1 on each of the components of E which contains an element of S.

The following result for p = I, which is analogous to Theorem 4.3, may
be proved in the same way.

THEOREM 4.5. Let n~l, Sc(a,h), K=KIl,t(S), fELt\K, and gEK.
Then the following four statements are equivalent.

(1) gEPK(f)·

(2) There exists eELc/C satisfying

(i) IIel1 7c = I, e = sgn(f- g) a.e., lvhere f- g =f. 0, e[iJ(h) = 0 for
l~i~n, (-I)lle[IlJ(t)~OfortES, and

(ii) S~eg=O.

(3) There exists eEL Xc satisfying condition (2)( i), and g is a polyno
mial of degree at most n - 1 on each of the components of the open set E
defined hy (4.1).

(4) There exists eELc/C satisfying condition (2)(i), and g is a polyno
mial of degree at most n - 1 on each of the components of the open set E
which contains an element of S.

We remark that if S = (a, b) (resp. S = JJ as defined in Section I) then
Theorems 4.3 and 4.5 reduce to the characterization of a best
Lp-approximation from KIl.p [30] (resp" n-convex splines in Lp of degree
at most n-l with simple knots [31]). These chararacterizations were
obtained by using an extension of integration by parts, Our approach
based on duality leads to a simpler yet more general proof.

5. L2-ApPROXIMATION BY NONDECREASING FUNCTIONS

In this section, we derive a more detailed characterization in the special
case when p = 2 and n = 1. Recall that K] (resp., K 2 ) is the set of non
decreasing (resp., convex) functions. Let B (resp., C) be the set of all
bounded (resp., continuous) functions on I (resp., on [a, b]). A function k
in K 2 n B is said to be the greatest convex minorant (gem) of fin B if it is
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the largest convex function which does not exceed f at any point in I.
Specifically,

k(s) = sup{h(s) : hE K 2 , hU) ~f(t), t E I}, S E I.

Such a unique k clearly exists. It is shown in [33, Theorem 3.1] that if
fEe, then its gcm is also in C. For fixed fEe and k E C with k ~ f, define

E(k) = {s E I: k(s) <f(s)}.

Then E(k) is open in I. If k is the gcm of f, then it is shown in [33,
Theorem 3.1] that k(a) = f(a), k(a) = I(h), and, hence, E(k) c (a, h).

PROPOSITION 5. t. Let fEe, k E K2 n C and k ~.f Then k is the greatest
convex minorant off if and only !f the following two conditions hold:

(I) k(a)=f(a), and k(h)=f(h).

(2) k is linear on each component of the open set E(k).

Proal If k is the gcm off, then the conditions follow by [33, Theorems
3.1 and 2.t(ii)].

Conversely, suppose that g E K 2 n C. g ~ f, and the conditions hold for g.
Also, let k be the gcm of f We show that g = k. Note that g ~ k ~ / and,
by (t), E(g) c (a, b). Let (c, d) be a component of E(g). Then g(c) = f(c).
Also, g(c) ~ k(c) ~f(c). Hence, g(c) = k(c). Similarly, g(d) = k(d). Since g
is linear on (c, d) and k is convex with g ~ k, we conclude that g = k on
(c, d). On T\E(g), we have g = f and, hence, that g = k = f The proof is
complete.

THEOREM 5.2. Let K = K I . 2 , the set of nondecreasing functions in L 2 ,

fE L 2 \K and g E K. Then g = P K (f) if and only if g is a.e. equal on I to the
derirative of the greatest convex minorant offr 11 (the derivative exists a.e.
on 1).

Proof Since e=/-g, we have e[ll=fPl_grll. By Corollary 4.4 we
find that g[ll~f[ll, g[ll(a)=f[ll(a), grll(h)=f[ll(h), and g is constant
on each component of G = {s: grll(s) </rll(s)}. By Proposition 5.t, grll
is the gcm off rll . The proof is complete.

The above characterization was obtained in [21] for a hounded function
f by methods of optimal control. We have thus generalized this result to
any fE L 2 by using duality methods.
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6. L1-ApPROXIMATION AND PERFECT SPLINES

In this section, we characterize a best L I -approximation to a continuous
f from K II. I in terms of perfect splines of order n. Some interesting relations
between best L I -approximation from splines and perfect splines are
investigated in [13, 28]. A perfect spline p of order n with knots at t i,

I~i~r, with a=to<t]< ... <tr<tr+l=h is any function of the form
[ 13]

r -- III I r (I t- 1

p(t)= L a,f+d L (-I)iJ (t-sr+ Ids.
j=O i=O Ij

Note that pill I) is continuous on (a, h) and pIIlJ(t) = (_I)i (n -I)! d for all
t E (ti' t i + I), °~ i ~ r. We first establish a special characterization theorem
for p ~ l. Let SII( t I' t2, ... , tr) denote the set of all polynomial spline func
tions of order n on I with simple knots at the points t I < t 2 < ... < tr in
(a, h). By sign changes of a function we mean strong sign changes as in
[25, p. 25, Definition 2.11 ].

THEOREM 6.1. Let l~p<c(), n~l, K=KfI.p(S), /ELp',K, and gEK.
Assume that 1"1- g a.e. on (a, h) and f- g has m < CiJ sign changes in (a, h).
Let e = If- gl p I sgn(f- g) if I ~p <X). Let

E = {t E (a, h) : ( - 1)11 erfl)(t) < O}.

Then erlll has no more than m + n distinct ::eros in (a, h).
The following two statements are equivalent.

(I) gEPK(f).

(2) (i) erl](h)=Ofor I ~i~n, and(-l)fle[fll(t)~O, tES.

(ii) g is a hest L p-approximation to ffrom SII(t I' t2, ... , tr), Ivhere
t i are the distinct ::eros o{ e[1I1 in (a, h) and r~m+n. (For p> 1, the
function g is unique since L p is uniformly convex.)

Moreover, ifp= I and/is continuous on [a, h], then the function g in (1)
and (2 )(ii) is unique.

Proof Let I' be the number of distinct zeros of e[lI] in (a, h). We
show that r ~ m + n. Note that each eli], 1~ i ~ n, is continuous. By
Rolle's theorem, e rfl

I] has at least I' - I zeros in (a, h). Repeating this
argument we find that e[l] has at least ,.-n+l zeros in (a, b). Now if
c<d are two zeros of e[I], then O=e[l](d)-e[I](c)=J:e. Since e and
f - g have the same sign changes, we conclude that e changes sign in
(c, d). Thus the number of sign changes of e in (a, h) is at least r - n.

Since r - n ~ m, the result follows.
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Now we show the equivalence of (l) and (2). Let g E P K(f). Then, (2 )(i)
holds by Theorems 4.3 and 4.5. Let the r zeros of ern] in (a, b) be denoted
by t i as in (2)(ii). Clearly, r ~ m + n. Let to = a, t,+ 1= b, and li= (t" t i+I),
o~ i ~ r. By Theorems 4.3 and 4.5, g is a polynomial of degree at most
n-l on Ii' Hence, gESn(tI' t 2 , ... , t,)=Sn, say. Then using integration by
parts as in Lemma 4.2 and the equalities, e[il(a)=efi](b)=O, 1~i~n, we
obtain for 0 ~ i ~ r,

= (- 1r- I (n - 1)! (e [,,] (b) - e f n 1(1,) ) = O.

It is known that (t-t,):-I, O~i~r, form a basis for S" [25]. Hence, the
above equation shows that JZ eh = 0, for all hE Sn- Therefore g is a best
LI'-approximation to I from S". We have shown that (2) holds.

Conversely, let g satisfy (2). Then, g is a polynomial of degree at most
n - 1 on (Ii' t i + d, 0 ~ i ~ r, which are components of E. By Theorems 4.3
and 4.5, g is a best L" -approximation to I from K n,l'( S).

We now show the last statement. Note that Sn(tl, t 2 , ... , t,) is an A-space
and a best L I-approximation to a continuous I from this set is unique
[19]. Hence gin (2) is unique. It remains to show that a best approxima
tion from K=K",I(S) is unique. Indeed, letg, kEPK(f) and e=sgn(f-g).
Then (2) holds and gES,,(tI, t2 , ... , t,). Since eEKo, we have JZek~O.

Hence, by a well known argument,

III-gill =re(f-g)=re/~r e(f-k)~ llellx Ill-kill = III-kill'
a a a

Since III- gill = III- kill, equality holds throughout and JZ ek = O. Then
arguing as in the proof of Theorem 4.3 we conclude that k is a polynomial
of degree at most n - 1 on each component of E. Again arguing as in the
part of the above proof which shows (1) implies (2), we obtain that k E S",
which is an A-space. Consequently, g = k and the proof is complete.

Note that if S,,=S,,(tI' t 2 , ... , t,), then the above theorem shows that
dl'(f, K) = dl'(f, S,,) = dl'(f, K n Sn)' where I and K are as in the theorem
and dl'(f, A) denotes the distance of I from A in L", 1~p < 00. Now we
state a theorem involving perfect splines.

THEOREM 6.2. Let n ~ 1, K = K".I (S), IE L I\K, and g E K. Assume that
I #g a.e. on (a, b) andl- g has m < 00 sign changes in (a, b) at s" I ~ i~ m,
Ivhere Sl < S2 < ... < Sm' Then the lollowing two statements are equivalent.
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(I) gE PK(f),

(2) There is a perfect spline p of degree n ll'ith knots at 5" I ~ i ~ m,
and distinct zeros at t" I ~ i ~ r, in (a, h) with t) < t 2 < , .. < tr such that the
following four conditions hold.

(i) p(l)(a)=pli)(h)=O, O~i~n-1.

(ii) plll)=(-I)"sgn(f-g) a.e. in (a,h).

(iii) p(t) ~ 0, t E S.

(iv) g is a hest LI-approximation to ffrom SIl(tl, t 2 , ... , t r ).

Moreover, if f is continuous on [a, h], then the function g in (I) and
(2)(iv) is unique.

Remark. The perfect spline pin (2) is given by p=(_I)"e[Il], where
e = sgn(f- g»).

Proof Under the hypothesis, Theorem 6.1 applies with p = 1. Define
p(t) = (-1)" e[Il](t), where e = sgn(f- g). Let So = a and Sill + 1= h. Then
p(Il}(t) = (-I)" e(t) = (j( -I)' for t E (5 ,,5, + I), 0 ~ i ~ m, where (j is the sign
off- g on (so, s)). With these arguments this theorem is a restatement of
Theorem 6.1. The proof is complete.

Let WIl be the Sobolev space of real functions f on (a, h) such that P" II
exists and is absolutely continuous on (a, h), or, equivalently, fill} exists a.e.
on (a, h) and P") ELI' We consider a problem on WIl equipped with the
usual L 1 norm. Let n? 1, S be (relatively) closed in (a, h), K= KIl.dS), and
fE WIl\K. Then, by Theorem 3.5, P K(f)i=0. Let gEPK(f), and assume
that f i= g a.e. on (a, h) and f- g has m <x sign changes in (a, h) at 5"

I ~ i ~ m, where 5 I < 52 < ... < Sm' Then, by Theorem 6.2, g is unique, and
ifpo=((-I)"(f-g»f"l, thenpohasr~m+nzerosatt)<t 2 < .,. <trin
(a, h). Let P Il denote the set of all perfect splines p of degree n with knots
at s,' I ~ i ~ m, zeros at t

"
1~ i ~ r, and satisfying Theorem 6.2(2), condi

tions (i) and (iii). Then Po E PII • We consider the problem of finding p*E Pn

such that

all p E P1l'

The following theorem shows that p * = Po. We let Lf = max {It, + 1 - t,I :
O~i~r}, where to=a and tr+1 =h.

THEOREM 6.3. For the ahove prohlem the follOll'ing hold.

(l) Ilf- gill = IJ~PoP"11 ~ IJ:pp"II,for all pEP", and

(2) II f - g III ~ min {jill (4n), (n - 1)" ~ I Lf"/ (n! 2")} II pili II I.
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Proof (I) For convenience let Ii = (t j, Ii + d, 0 ~ i ~ r. For all PEP",
since pUI(a) = pU)(h) = 0, 0 ~ i ~ n - I, integration by parts as in Lemma 4.2
yields

=(_1)"-1 i JpI11(f("-II_gl" II).

i= 0 I,

Since p(tJ = 0, again integration by parts gives

By Theorem 6.2, gES,,(l l , 12"", Ir )· Consequently, gl"'(t)=O for tEl;,
O~i~r. Also, lin1(1)! = 1 for 1i=l j • Hence we obtain, using the above
equalities,

Since p~"1 = (-1)" sgn(f- g) a.e., we have

rPoll'll =rp~'l(f_ g) = (_1)'1 r
n
If- gl = (-I)" Ilf- gill'

.. a a ~ a

This establishes (I).

(2) By an estimate given in [14] we have IIPoll" ~LI!l/(4n) IIp!;''11 L'

and

IIPol1 x ~ (n -I)" I LI"/(n! 2") Ilpg'lllx.

Using (I) we obtain III-gll,~IIPoL· ilfl"IIII' From these three
inequalities and the fact that [lpg/III x = I, we obtain (2).

The proof is complete.
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