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A generating basis and the dual cone of #-convex functions satisfying certain con-
straints are derived. As applications, the existence and characterization of a best
L,-approximation (1 <p < o) from such subcones to a function in L, are estab-
lished. The relationship between a best L, -approximation and perfect splines is
developed under certain conditions. 1995 Academic Press, Inc.

INTRODUCTION

Recently, there has been considerable interest in best L, -approximation,
1 <p < oo, by n-convex functions (e.g., [8, 12, 30, 34, 271). In this article,
we consider a constrained L,-approximation problem in which the
approximating set is a convex subcone of n-convex functions determined by
certain constraints. This problem was seen to arise naturally when one con-
siders best constrained approximation (see {2] or [3]), which in turn
arises from smoothing and interpolation problems (see, e.g., [4, 16]).
A main problem of [3], for example, was to characterize best constrained
approximations to elements x in a Hilbert space X from the set

K=C A \(b),
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where C is a closed convex cone in X, 4 is a bounded linear operator from
X into a Hilbert space Y, and be Y. It was seen there that this problem
reduced to the generally simpler problem of determining best approxima-
tions to a perturbation of x from a certain subcone of the cone C. In the
important cases when the cone C is the cone of positive functions, the
increasing functions, the convex functions, or, more generally, the cone of
n-convex functions, it was seen in [3] that the subcones that arise are
precisely of the form that we consider in this paper (in the more general
framework of the L, -space). We establish the existence of a best
L ,-approximation and its characterization by first determining a gene-
rating basis and then the dual cone of the subcone. This approach, based
on duality, leads to simplicity of both methods and results, and par-
ticularly, a simple proof for the characterization of a best approximation.
We consider L,-approximation by nondecreasing functions, a special case
of the above problem, in some detail and extend an earlier result of [21].
We aiso explore the relationship between a best L, -approximation from
the subcone and perfect splines.

Let X be a real normed linear space and X* its topological dual with its
usual norm. Let K< X be a closed convex cone, i.e., a closed subset of X
which satisfies the condition that Af+ uhe K whenever £, he K, 1> 0 and
1=0. Given fe X, let

Pu(f)={geK:|/—gl=inf{|/—k|:keK}]

where || -|| is the norm on X. P (f) is called the set of best approximations
to f from K. Define the dual (or polar, or conjugate) cone K° of K by

K= {x*e X*:x*(k)<Oforall ke K}.

The dual cone plays a significant role in the characterization of a best
approximation as follows.

THEOREM 1.1. Let fe X'\K and ge K. Then ge P (f) if and only if
K’ng*nD(f—g)+ O,
where g* = {x*e X* :x*(g)=0} and
D(h)= {x*e X* . ||x*| =1, x*(h)= | h|| }, he X.

This result is a special case of a general characterization of best approxima-
tions from any convex set established independently in [5, 24]. (See [26,
p. 362] for an accessible reference to these papers. See also [6, 32, 35] for
further results on duality.) For 4 < X, we denote by cc(A4) the smallest con-
vex cone containing A or, equivalently, the set of all non-negative linear
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combinations of elements of 4. We denote by cc(A4) the smallest closed
convex cone containing A. Since the closure of a cone is a cone, this is the
closure of cc(A). A proper subset M of K is called a generating basis for
Kif K=c¢c(M).

In this article, we let X =L, (1), |-l =|-l,, 1<p< oo, where I=[a,b]
is a compact real interval with Legesgue measure, and let K=K, ,(S),
n=1, be the convex subcone of the n-convex functions in L, to be defined
below. In Section 2, we find a generating basis for K and characterize the
dual cone K° These results are derived from earlier known work on
generalized convex functions induced by Extended Tchebycheff systems,
also called the ET systems [9, 10]. In Section 3, we use the results of [34]
to establish the existence of a best L, -approximation from K. Using
the results of Section 2, we obtain a characterization of a best
L -approximation in Section 4. In Section 5, we consider the case of
1-convex (i.e., nondecreasing) functions with p=2 and extend a charac-
terization of a best approximation to a bounded function [21] to any func-
tion in L,. In Section 6, under certain conditions, we characterize the
unique best L, -approximation by n-convex functions in terms of a unique
perfect spline.

We now present the notation and terminology used in this article in
detail. We first state the following two equivalent definitions of a real
function k& which is n-convex on an interval J< I, where n = 1; additional
definitions appear in [22].

(1) For all n+ 1 points s,<s,< --- <s, in J, the nth order divided
difference [sq, 51, .., 5, 1k of k is nonnegative.

(2) Forallnpointss, <s,< --- <s,ind, (= 1)" """ (P(s)—k(s))=0
for all s in (s;,5;,,), 0<i<n, where P(s) is the unique Lagrange inter-
polating polynomial of degree at most (n — 1) passing through the points
(s;, k(5;)), | <i<n, and s, and s, , , are the left and right endpoints of J.

It is known that a function k which is n-convex on J = (a, b) has at most
n monotone segments. This result may be derived from [20] (or see [34,
p. 236, property (2)]); it is extended to generalized convex functions in
[12]. Hence, & is monotone on the intervals (a, a +¢) and (b—e¢, b) for
some ¢>0. Consequently, we let k(a)=k(a+) and k(b)=k(b—), where
these limits may be +. We let K,, n> 1, denote the set of all functions
on [ which are n-convex on (g, #) and are so extended to the endpoints. We
point out that the functions which are n-convex on { are a proper subset
of K,; the former, by definition, are necessarily finite at the endpoints of L.
A best approximation to an f€ L, may not exist from the former class, but
always exists from K, [34].

Let u, denote the Lebesgue-Stieltjes complete measure generated on
(a, b) by a real nondecreasing and possibly unbounded function g on (a4, ),
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which 1s not necessarily right continuous. Then, for each Borel set 4 <
(a, b), we have

ug(A>=inf{zf (g(h)—gla)): A< | (ay. b, (af.b,)c(a,h)}.

i=1 i=1

and p, is the completion of this measure on the Borel sets [17]. Let
S<(a, b) be any Borel set and S’ = (a, )\ S. For ke K, let ki7"’ denote
the right continuous nondecreasing right derivative of the (n—2jnd
derivative of k defined on (a, b), where k'Q(1) = k a(t) = k(1 + ). (See Section
2 for the justification of the existence of these derivatives.) Let py , = gy 4,
ie. p,, denote the Lebesgue—Stieltjes measure generated by k%' on
(a, b). Note that u, ,, which is generated by k., is identical to u,, which
is generated by & [17, p. 160, Proposition 3.9]. Define

Kn(S): {kEKn : lukn(S,)ZO}

In particular, since g, , = u,, we have K,(S)=1{ke K, : u,(S')=0}. Note
that each k in K, generates a distinct y;,, and an associated sigma-field.
However, S’ is measurable relative to each g, , since it is a Borel set; thus
K, (5) is well defined. 1t is a convex subcone of K. Clearly, K, = K, {((a, b)),
and K, (J) is the set of all polynomials of degree at most n—1 on /. In
addition, if S=I={¢t <1,< --- <1,}, then K, (IT) is the set of all
n-convex splines of degree at most n — 1 with simple knots at ¢,. Thus, this
framework covers several important cases of interest.
We define

K, (S)=K/(S)nL,, 1 <p<ox,

where L,= L,(I). This is a cone (a subcone of K,(S) and hence of X,) in
L, from which we seek best approximations. When S # (a, b), K, (S) is a
proper “constrained” subcone of K,. Such sets arose naturaily, but
implicitly, in the study of constrained approximation in [15, 16] for n=1,
and explicitly in [2, 3] for n=1, 2. In this notation, (K, ,(S))° is the dual
cone of K, ,(S)in L. For brevity, we let K, ,= K, ((a,h))=K,nL,, and
K} , its dual cone.

We briefly review some related literature. If fe L,, 1 <p < o, then the
existence of the unique best approximation follows since K, , is closed and
convex [ 34, Theorem 3.1] and L, is uniformly convex. In L,, the existence
follows by the same theorem in [34] or by [11]. We observe that 1-convex
and 2-convex functions are, respectively, the nondecreasing and convex
functions. More complex cases of »-convex functions occur for n > 3. There
is much literature on L ,-approximation by unconstrained n-convex func-
tions, particularly for n=1. For characterization and properties of best
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approximants see [ 11, 27, 29-31, 37] and other references given there. Best
constrained approximation in Hilbert spaces was investigated in [2, 3, 16].
Constrained approximation by nonnegative functions in L, spaces was
investigated in [15]. Certain interesting relationships between best
L -approximation from the linear space of splines and perfect splines were
obtained in [13, 28].

2. PRELIMINARIES

In this section we obtain several preliminary results on n-convex func-
tions and Lebesgue-Stieltjes measures. These results are needed in the

analysis to follow.
We first state some basic facts about »#-convexity. Let k'’ denote the ith

derivative of a function &, where £*' = k.

LEMMA 2.1. Letn=1 and ke K,,.

(1) Every function in K,,, n22, is continuous on (a, b) [1].

(2) k' existson (a, b)yand k' e K, ,, 1<i<n—2[1, Corollary 15].

(3) k' 2 is convex on (a, b).

(4) The left (resp., right) derivative k{" ") (resp., k¥ ") of k"
exists on (a, b), is nondecreasing, and is left (resp., right) continuous
[22,23].

(5) k" U=kl " ae., and, hence, k" ") exists a.e. on (a, b).

2)

LEMMA 2.2.  Let k be a real nondecreasing and possibly unbounded func-
tion on (a,b) (ie, ke K,). If u=p, is the Lebesgue—Stieltjes measure
generated by k on (a, b) (as in Section 1), then, for any choice of ¢ <d in
(a, b), the following hold [17].

(1) wle} =k(et)—k(c—).
(2) ple,d)=k(d—)—k(c+).
(3) ule,dl=kld+)—k(c—).

4y wple,d]=k(d—)—k(c—).

(5) ule,dl=k(d+)—k(c+).

Following the usual conventions, let a, =max{q, 0}, a_=a, —a=

max{—a,0}, (s—0)" '=((s—¢t),)" ' and (s—1)"" "=((s—1t)_ )" for
n = 2. Also define
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(s—1)°% =0, if s<i,
=1, if s=1,
(s—1% =1, if s<r,
=0, if s=¢
These functions will be used in this and the next section.

Let ke K,(S) and O0<d<(b—a)/2. For O0<e<d, define as in [10,
p- 3911, p(5e)=p(-1¢) by

plt;e)=kY Na+s), if te(a, a+e),
=k (1), if rela+e b—5),
=k V(b—¢), if telb—e b) (2.1)
Recall that if k € K,(S), then k(¢) =kg(t) =k(¢+). Also define

n—1

k(t;£)=|:}‘h (t—x)7 "dp(x;e)+ ) a(e) t":Iv»/(n— 1, if n=2,
= ]

a i

= pl1; ¢}, if n=1, (22)

where numbers ¢;(¢) are chosen so that £(-;e)=4k on (a+¢ b—e¢). The
following lemmas collect some useful properties of the function &(-,¢)
which play a significant role in our later developments. Recall from Section
! that if ke K,,, then g, , is the measure generated by k¢~ ' and g, , = .

LemMMma 23. Let ke K (S),n=z1,and 0<d<(b—a)/2. For 0<e<?d, let
pl-,e) and k(-;e) be defined by (2.1) and (2.2). Also, let u be the
Lebesgue—Stieltjes measure generated by p(-; €). Then (1)-(6) below hold for
n=2. If n=1, then (1)-(4) hold verbatim; (5) and (6) hold with the function
k there replaced by ky.

(1) u(S)=0.

(2) u is the measure generated by k¢ ~(-; ).

(3) k'Na+;e), k'(b—;¢) for 0<i<n—2, and k¥ '"Na+;¢) and
ki Y(b—; &) exist and are finite.

(4) k(- e)ekK, (S), 1<p<cx.

(5) k(;e)=k on (a+eb—¢g), k(;e)<k on [b—¢b), and
(—1)"k(;e)s(—1)"k on (a,a+¢].

(6) For each fixed t in (a,a+6) (resp., (b—6, b)), k(t;¢) (resp.,

(—1)"k(1;€)) is a nonincreasing function of ¢ for 0 <e<d. Furthermore,
k(;e)thkon(b=36,b), (—1Y'k(-;e)1(=1)"k on (a,a+9), as ¢|0.
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Proof. To show (1), we use the right continuity of p(-;¢) and its con-
tinuity at @+« Suppose n>2. Then p(-;e)=kY "V on (a+e b—c]=J,
say, which gives u=p,, on J (ie, for measurable subsets of J). Since
ke K, (S), we have g, ($'nJ)=0 and hence u(S'nJ}=0. If n=1, then
pl;e)=kg on (a+e b—e], which gives p=p,,=p, on J. Hence,
as before, u(S'nJ)=0. Now for all rn=1, we have pla,a+¢]=
u(b—¢, b)=0. We conclude that u(S5")=0, which is (1).

To prove the remaining parts, we apply [10, Chap. XI, Theorem 2.3]
with w;=1 and »n replaced by n— 1. Suppose #n = 2. We differentiate (2.2)
n— 1 times as justified in [10, p. 392] and obtain

ki V() =fh (1—x)% dp(x;e)+a,_,(¢)

a

=p(t;e)—plat;e)+a,_(€), (2.3)

by the right continuity of p(-;&). Thus k% ~')(-;¢) and p(-;¢) differ by a
constant and (2) follows. To show (3) we observe that p(-;¢) is non-
decreasing and bounded. Hence, again by (2.3), we conclude that
k&~ a+;e) and ky "b+;e) exist and are finite. It follows that
k'(a+;e)and k(b —;¢) exist and are finite for 0 <i<n—2. If n=1, then
(2) and (3) follow immediately. By (3), A(-;¢) is bounded and, hence, in
L,. Now, by the theorem in [10] cited above, and (1) and (2), we con-
clude that (4) holds; again (5) and (6) hold by the same theorem. The
proof is complete.

LEMMA 2.4, Let ke K, ,(S),nz1and 1 <p< 0. Then

(1) [k(-se)—kll,—0asel0.
(2) f[ok(-,e)h—(2khas |0 for all he L,, where 1/p+1/g=1.

Proof. Suppose n>=2. By Lemma 23(5), for O<e<d we have
|k —k(-;e)l <lk—k(-;8)]eL,. By Lemma 2.3(6), k(-; &) = k pointwise as
¢} 0. Hence, by the bounded convergence theorem [77, we conclude that
(1) holds. For n=1, since k=ky a.e., by the same argument (1) holds.
Now (2} follows immediately from (1) by an application of Holder’s
inequality [7]. The proof is complete.

A family F of real functions is said to be equi-Lipschitzian on a compact
subinterval J of (a, b) if | f(s)— f{t)] <c |s—¢| holds for all fin F, all s, ¢
in J, and some ¢ > 0. Parts of Theorem 2.5, below, are extensions of similar
results for convex functions [23, Sect. 10]; others are contained in [34].
Results similar to parts (1) and (3) appeared in [36]. It was shown in [[12]
that Theorem 2.5 is also true in a more general framework of generalized
convex functions relative to a nonlinear family under certain conditions.
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THEOREM 2.5. Let n212, 1 <p< x, and (k;) be a sequence in K,,.

(1) If a sequence in K, converges pointwise to some real function k,
then k is in K, and the convergence is uniform on every compact subinterval
of (a, b).

(2) If (Ilk,|l,,) is bounded, then (k) is pointwise bounded on (a, b).

(3) If tk,) is pointwise bounded on (a, b), then (k,} is equi-Lipschitzian
on every compact subinterval of (a, b) and (k;) contains a subsequence which
converges pointwise on (a, b) to some function in K,,.

PROPOSITION 2.6. Let (k;) be a sequence in K, n=2, such that k,—k
pointwise on (a, b) for some k in K,. Then k! —k'" pointwise on (a, b)
uniformly on every compact subinterval J of (a, b) for all 0 <i<n—2. (For
the case i=n—1 see the remark following the proof below.)

Proof. We first establish the result for i=1 when n > 3;1t holds for i=0
by hypothesis and Theorem 2.5(1). Let (g;) be any subsequence of (k;").
We show that this in turn contains a subsequence converging pointwise to
k" uniformly on every J. This will prove the assertion. Since (k;) is
pointwise bounded on (a, b), by Theorem 2.5, there exists ¢ >0 such that
lk;(s)— k(1) <cl|s—1 for s, t in J. Consequently, [k!"'(s)| <c for 5 in J.
Thus k§" is pointwise bounded on (a, b). Since k"€ K, ,, by Theorem
2.5, (k!'') contains a convergent subsequence. Hence, assume that g, itself
is convergent to some g in K, _,. We show that g=k""". Let (h,;) be the
subsequence of (k;) such that gj=h}”. Let te(a, b) and let J' ={u,v] <
(a, b) with u < s <t <v. Then since /; is Lipschitzian and, hence, absolutely
continuous on J’, we have &,(r)= [ h{" + h;(s). Since |h{"| < ¢’ for all j for
some ¢’ >0, using the bounded convergence theorem and passing to limits,
we obtain k(z)=(!g+k(s). Since &''"" and g are continuous, we have
k'V=g on J' and, hence, on (a, b). By Theorem 2.5(1), k{"’ converges to
k""" uniformly on J. Now since k{' is in K, |, we apply the same argument
to prove the assertion for (kl‘.l’), etc. The proof is complete.

Note that k{"~'" is the derivative of the convex function k{" ~?". Its con-
vergence is covered in [23, Theorem 25.7]. Recall from Section 1 that
grlt)=g(t+). We define g, (1) =g(t—).

LEMMA 2.7. Let g, ke K, and g=k ae. on (a, b). Then the following
hold.
(1) gp=kg and g =k, on (a, b).
(2) The sets of discontinuities of g and k are identical.

(3) g and k generate identical Lebesgue—Stieltjes measures on (a, b).
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Proof. (1) Let E be the set of continuity points of both g and 4. Since
a real nondecreasing function (possibly unbounded) has countable discon-
tinuities, we have A(E'}=0, where E'=(a, b)\E and 1 is the Lebesgue
measure. Since g =k a.e., g =4k on E. Now suppose that s€ E'. Then since
A(E'}=0, given J >0 there exists 1€ F with s <t <5+ so that g(t)=k(1).
It follows that g(s+)=+k(s+ ). Similarly, g(s—)=4k(s—). This gives (1).
Since g s discontinuous at s if and only if g(s+)—g(s— ) >0, (2) is estab-
lished. Now g and gy generate the same measure on (¢, b) [ 17, Proposition
3.97]. Hence (3) follows from (2). The proof is complete.

LemMa 2.8, Let (k;) be a sequence in K, such that k;— k pointwise on
(a, b} for some k in K,. Let pu; and p be the Lebesgue—Stieltjes measures
generated by k; and k on (a, b). Let ¢ <d in (a, b) be any two points of con-
tinuity of k. Then,

(1) kj(c+)—k(c)and k;(c—)—k(c);
(2) ple,d)— ple, d).

Proof. Let £>0. There exists ¥ >0 such that k(c)—e<k (c)<k;(c+)
for j= N. Hence k(c) <lim inf k(¢ + ). Now let s > c. Then there exists N >0
such that k,(c+ )<k, (s)<k(s)+e for j= N. Hence limsup k,(c+ ) < k(s).
By continuity we have limsup k;(c+ ) <k(c). This shows that &,(c+)—
k(c). Similarly, we have k,(c—)—k(c), and (1) is established. Part (2)
follows from Lemma 2.2(2) applied to &, and k. The proof is complete.

The following slight generalization of Helly’s selection theorem [18,
p. 221, Lemma 27 is needed for our purpose.

LEMMA 2.9. Let (k,) be a sequence in K, which is bounded uniformly in
J on every compact subset of (a, b). Then there exists a subsequence which
converges pointwise on (a, b) to a function in K, which is bounded on every
compact subset of (a, b).

Proof. Let O<e<(b—a)/2 and I, =[a+¢e/m, b—¢/m]. By Hellys
theorem, there exists a subsequence (g, ,) of (k;) which converges at every
point of I,. Again, by the same theorem, there exists a subsequence (g, ;)
of (g, ;) which converges at every point of /,. Repeating this argument for
each 1,, we finally let (g,) = (g, ), the diagonal sequence which converges.
Clearly, the limit function is in X, and is bounded on every compact subset
of (a, b). The proof is complete.
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3. GENERATING BasIs FOR K, ,(S) AND EXISTENCE OF BEST APPROXIMATIONS

np

In this section we obtain a generating basis for K,(S) and K, ,(S) from
earlier known results [9,10], and establish the existence of a best
approximation from K, ,(S).

The following set of functions, M ,(S) or M, (S), of the variable s will be
shown to generate K, ,(S), n>1, if S is (relatively) closed in (a, b).

M (S)={+s:0<igsn—1}u{(s—0)"""':1eS},
M(S)={xs":0<isn—1}u{(=1Y (s—=0)" ':1eS}.

Note that (s —7)° and (s—r)% are right continuous.

We collect a few more facts for ease of reference.

LEmMMa 3.1. (1) keK,,n=2]l, if and only if it is the (n— 1)st indefinite
integral of a nondecreasing function [1, Corollary 8(a)].
(2) k(s)=(s—0)""" (resp, (—=1)" (s—t)" "} is n-convex.
(3) Ifk(s)=(s—1)" ", then k¥ "(s)y=(n—=1)1 (s—1)°, and u,, is
zero on (a, t) (1,b). Hence ke K, (5) if 1€ 8.
(4) s'eK,(S),0<isn—1.
(5) M, (S)=K,(S)and M,(S)c K, (S), | <p<oc.

Proof. (2) This follows from (1) since (s — )", (resp., (—1)" (s— )" 1)
is the (n—1)st indefinite integral of the nondecreasing function
(n—1) (s—1)° (resp., —(n—1)!(s—1)") plus a polynomial of degree at
most n—2.

(3) This is clear.

(4) The (n— 1)st derivative of k(s)=s!, 0<i<n—1, is constant so
that p; ,,=0. Thus ke K,(S).

(5} By (3)and (4) we have M, (5) < K,(S). Since functions in M, (S)
are bounded, we have M, (S)cL,, and the first inclusion in (5) follows.
A similar proof establishes the second inclusion.

The proof is complete.

np

Let S, denote the set of all polynomial spline functions of degree n— 1
with a finite number of simple variable knots in (a, 6) [25]. It is then easy
to see that M,= M, ((a,b))=S, and S, is spanned by M,u {—~M,}.
Similar results hold for M = A ((a, b)). Recall that if A = L, then €c,(A4)
denotes the closure of cc(4) in L.

THEOREM 3.2. K, (S)<TC,(M,(S))=CC,(M,(S)) for all n=1 and
I<p<o.

64080 2.5
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Proof. Clearly, (—1)"(s—t)" '+ (s—1)" '=(s—10)" " for all n> 1.
Hence, cc(M,(S))=cc(M,(S)) and ©C, (M, (S))=7cC, (M, (S)). Now let
kek,,(S) and 0<é<(b—a)/2. For 0<e<d, construct k(-;¢) as in
(2.2). Then by Lemma 2.3(4), k(-;&¢)e K, (S), and by Lemma 2.4(1),
lk(-;e)—kll,—0 as £|0. Let u be the measure generated by p(-;¢) on
(a, b). First suppose that n>2. Let f(1)={,(1—x)" 'dp(x;¢e), te(a, b)
Note that p(-; ¢) is bounded, and the family F= {(s—x)", ':re} of func-
tions of the variable x, is equi-continuous on 1/, i.e., given € > 0 there exists
0 >0 such that | f(x)— f(y)| <8 whenever |x—y| < ¢ for all fe F. Let a=
Xg<Xx, < --- <x, ., =b be a partition of (a, b) such that x,—x,_, < for
I <i<m+1. For convenience of notation, let p(b;e)=p(b—;¢) and ¢=
p(b—;e)— pla+;e). Since u(S')=0, by the right continuity of p(-;e), we
have u((x;_,, x;]08)=ulx, |, x;]=p(x;;e)—p(x,_ ;€)= 4,;, say. Then
4;20. Let D={1<i<m+1:4>0}. If ieD then (x;, ,,xJnS#.
Now choose y,e(x,.,,x;]Jn S arbitrarily for ie D, and define g(t)=
Sien(t—y)% "4, Then, by construction, |f(s)—g(s)|<0c for all s in
(a, b) since 3, p 4, =c. Clearly, gecc(M,(S)), and hence, f€TC, (M ,(S)).
We conclude that k(-;¢) is in ©C,(M,(S)). Thus keTC,(M,(S)) and the
result is established for n = 2.

Now suppose that n=1 and, for convenience, let f=4k(-;¢) and 6>0.
Then fe K, ,(S). Note that fis bounded and right continuous. Let j be the
smallest integer with j+ 1= (f(b)— f(a))/0. Let I,= {sel: f(s)=f(a)+ i},
0<i<yj Since f is right continuous, I, has the form [s,, b), where
a=50<5,< - <5;,,=b Let a=xy<x, < --- <x,,,=b be all distinct
elements among s;. (If / has a jump at a point ¢ then some of the s, may
be identical to ) Then f{x, )< f(x,) for 1<i<m. Now, as before,
u(x;, ., x;,1nS)=f(x;})— f(x;,_,)>0 for 1<i<m. Define y,eS with
a=yo<y < - <y,.1=b as follows. If u{x;}=f(x)—f(x;)>0 for
1<i<m then x,eS, and let y,=x; Otherwise, if f(x;)=f(x;), choose
y; arbitrarily in (x;_,, x,]n S, which is nonempty since its p-measure
is positive. Now define g(s)=f(a)+ X7, (f(y) =Sy Ds—r)%.
Then gecc(M,(S)) and, by construction, | f(s)—g(s)| <26 for se(a, b).
Hence, fetC,(M,(S)). Consequently, by Lemma 24(1), kecc,(M,(S))
establishing the result for n = 1. The proof is complete.

PrOPOSITION 3.3, Let n=1 and 1<p<oo. Assume that S is not
(relatively) closed in (a, b). Then TT,(M ,(S)\K,, (S) is not empty.

Proof. There exist te(a, b)\S and a sequence (¢;) in S such that 1, — 1.
Define k;(s)=(s—¢)"% ' and k(s)=(s—1)" " Clearly, k;e M,(S), and
k;—~k ae. on (a, b). Since k; and k are bounded by (b —a)"" !, using the
dominated convergence theorem [7], we have [k, —k[,—0. Thus
keTc,(M,(S)). Let u be the Lebesgue-Stieltjes measure generated by



DUAL CONES AND 7n-CONVEX L -APPROXIMATION 191

ki sy=(n—1D!(s—0)S. Then g{r} =(n—1)1#0, and k¢ K, ,(S). The
proof is complete.

Let H denote the set of all extended real-valued functions on I For
Pc H we define P to be the set of all functions f in H such that f;— f
pointwise on (a, b) for some sequence (f;) in P. Such sets find applications
in proving the existence of a best approximation [12, 34]. The definition of
P given here is as in [12] but weaker than the one in [34]; however, it will
be seen that all the results of {347 hold with this change. The following
results from [34] will be used in our proofs.

THeorEM 34. (1) K,,=K,nL,=K,nL,.

[2] If P<K, is nonempty with PAL,=PAL,, then PnL, is
proximinal in L,. In particular, K, , is proximinal in L,.

Now we state the main result of this section.

THEOREM 3.5. Let 1 <p< oc. The following statements are equivalent.

(1) S is (relatively) closed in (a, b).
(2) If (k;) is a sequence in K,S), n>1, such that k; converges
pointwise to a real function k on (a, b), then ke K (S).

3) K, (S)=K(S)nL,=K(S)nL,.

(4) K, (S) is proximinal in L,, nz1. (Hence K, (S), 1 <p<oc, is
Chebychev.)

(5) K, ,(5) is closed in L, nz= 1.
(6) K, (S)=TC,(M,(S))=CC (M, (S)), n=1

Proof. (1)=(2) Let (k;) and k be as in (2). Then k;e K, and hence
ke K,. By Proposition 2.6, k" 2 — k"~ 2! pointwise on (a, b). Again, by
Theorem 2.5, the sequence (k" 2 of convex functions is equi-Lipschitzian
on compact subsets of (a, b). Hence, the sequence (g;=k!% ') of non-
decreasing functions is bounded on compact subsets of («, #). By Lemma
2.9, there exists a subsequence of (g,) converging to some g in K, on (a, b).
Assume, for convenience, that (g,) itself converges to g. Now let E be the
subset of (a, b) on which k"~ ') exists, ie, ki " =k{""" holds. Then
A{a, PNE)=0, where 4 is the Lebesgue measure on (a, b) [22]. By a
known result, e.g., [23, Theorem 25.7], we conclude that g,(s) — ki ~"'(s)
for seE. It follows that kg '"=g ae Let g, u and u be the
Lesbesgue-Stieltjes measures generated by g,, g, and ki ~ "), respectively.
Then, by Lemma 2.7, we have u=u’. Let (u, v) be a component (maximal
open subinterval) of the open set S'=(a, b)\S. Since ge K, we can find
sequences (c¢;) and (d;) of continuity points of g such that u < ¢, < d, <v and
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c;lu, d;Tv. Then p,(c,, d;) < p;(u, v)=0. Letting j — o0, by Lemma 2.8, we
obtain u{c;, d;)=0 for all i, which gives p'(u,v)=p(u,v)=0. Thus
#'(8)=0 and ke K,(S).

(2)=(3) Clearly K, ,(S)=K,(S)nL,. Suppose now that ke K,(S)nL,.
Then there exists a sequence (k;) in K,(S) such that k; >k pointwise on
{a, b). Since KAS)nL,cK,nL,=K,nL, by Proposition 3.3, we con-
clude that ke K, and, hence, is real-valued on (g, #). By (2), ke K,(S).

(3)=(4) This follows by Theorem 3.4 with P= K, (S).

(4)=>(5) Proximality implies closedness.

(8)=(6) Since K, ,(S) is closed in L, we have X, (S5)>
CC,(M,(S)).

The converse follows by Theorem 3.2.
(6)= (1) This follows by Proposition 3.3.

The proof is complete.

4. CHARACTERIZATION OF (K, ,(S))® AND BEST L,-APPROXIMATION
BY K, ,(S)
In this section we apply the results of Section 2 to characterize the dual
cone (K, ,(S))? and a best approximation to f in L, from K, (S).
For he L,, we define

np

A hffl(ﬂ:f'h[f*‘](z)dz, sefab), izl

Thus 21a)=0, for i> 1. Note that L*, 1 <p< oc, is identified with L,
where g=p/(p—1)ifp>1l,andg=x if p=1L

THEOREM 4.1. For n>2 1, 1 <p<w, and all Sc{a,b), the following
hold.

(1) (K, p(5))°=(M,(S))° = (M(S))".
(2) (K, (8))°={heL, :h"(b)=0, 1<i<n, and (—1)" A1) <0,
te S}
Proof. (1) By Theorem 3.2, we have M, (S)c K, (5)<=CTC, (M, (S))
Hence (M,(5))° > (K, ,(S))° = (€, (M ,(S5)))°. Since (M,,(5))° = (T (M ,(5)))",
as may be easily verified, the result follows.

(2) Suppose first that he (K, (S))° Then, by (1), [%hk <0 for all
ke M, (S). We first prove that Al(b)=0 for 1 <i<n We proceed by
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induction on i Substituting k(s)= %1 in {5hk<0, we at once obtain
hU"1(p)=0. Next assume that AU1(h)=0 for 1<i<m, where m<n—1.
Then, since he L, and k(s)= +s™ is in M,(S), we integrate by parts to
obtain

b
0= f $s"h(s) ds
b

=[s"hl"Y(s)12 —m J‘ s hU(s) ds

b
- _mf s™ U (s) ds.

a

Hence, [7s” 'h"")(s)ds=0. Applying the above step successively, we
obtain {7 s°ht"1(s) ds=0, which gives Al"*')(h)=0. Hence h'(b)=0,
I <i<n Again, substituting k(s)=(s—¢),"' with reS in {5 hk <0 and
integrating by parts, we may easily verify that

b b
OZJ (s—t)':j‘h(s)ds=j (s—1)"" Y h(s)ds=(=1)"(n—1) h1"){(1).

This gives (—1)"h")(1) <0, t€S.

Conversely, if helL, and satisfies hU'}(h)=0 for 1<i<n, and
(—1)" A1) <0 for 1€ S, then we may show as above that % hk <0 for all
ke M,(S). Thus he (K, (S))° and the proof is complete.

n.p

Next we obtain one preliminary result needed for characterization of a best
approximation.

LemMMa 4.2, Assume ge K, ,(S), and let p,(-;¢) and g(-; &) be as defined
by (2.1) and (2.2) for this g. Also, let he L, where | <p< x, l/p+1/g=1,
and h'a)=h")(b)=0, 0<i<n. Then, for n =1,

b
J hg(-;s)=(~1)"J ™) dg =",

a (a+eb—2¢]

Proof. Suppose first that n>2. By Lemma 23(4), g(-;¢e)e K, (S).
Hence, g“'(-;e) is obtained by successive indefinite integrations of
2w~ Y(-;e). By Lemma 2.3(3), we conclude that g'(-;¢), 0<ig<n—2, is
bounded on (a, 4); it is also absolutely continuous since it is an indefinite
integral. Again, A, i> 1, is absolutely continuous on /. Problem 3.3.6 of
[17, p. 166] as extended to the Lebesgue-Stieltjes signed measure
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generated by g(-;¢) gives us {2 al'Tdg(-;e)=["h1"Tg"(-; ¢). Similarly,
{2 g(-;e)dh'™ = [%hg(-;¢). By [7, Theorem 111.6.22], we have

fh hg(-;s)=fhg(-;s)dhm

—h(b— ) glh—se)— Al Na+) gla+se)— [ AT dg(se)

(a.b}
b
=—[ A5,

The above argument applied successively gives
b b
[ hgCiey=(—1y 1 [ At tig ()

b
=(_1)n71f h[n—l]gtknfl)(';g)’
since g M(-;e)=gW "(-;¢) ae Again, arguing as above we obtain
§ohg(e)=(—1) [ nh""V dgy (-;€). Now, by definition, p(-; ¢) is con-
stant on (a,a+¢] and (b—¢, b), continuous at a+¢, and p(-;¢)=g4% "
on (a+e¢b—¢]. As in the proof of (23), g¥ "(-;)=p(;e)+c=
gt~ +con (a+e b—¢] for some constant ¢ depending on ¢ Hence,

|, ndgg o= K dgd )
(a.h) {a+eb ]

=| hUY dglo =),
(a+e.b -]
The required result is established for n>2. If n=1, then the result may be
derived as above by using the results on integration by parts. The proof is
complete.

As was observed before, if X=L,, 1 <p< oo, then X* is identified with
L,. Hence, if 1 <p<oo, then D,(f)=(f1/I/1,)" "' sgn(/)eL,, where
g=p/(p—1), and

D (f)={h:|hl,=1,h=sgn(f)ae where f#0} = L,.

We observe that e and E in Theorem 4.3, below, depend upon g; in fact
they are uniquely determined by f—g. This, however, is not the case in
Theorem 4.5. For simplicity of notation, we suppress any dependence.
Similar remarks apply to other characterization theorems in subsequent
sections.
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THEOREM 4.3. Let 1<p<oc, nz1, Sc(a,b), K=K, (S), feL\K,
geK, and e=|f—g|” 'sgn(f—g). Define

E={te(ab): (—1)" e 1)<0}. (4.1)

Then the following four statements are equivalent.

(1) g=Pg(f).
(2) (1) eYYp)y=0for 1<i<nand (—1)" el"1(1)<0, teS.
(i) [*eg=0.
(3) Condition (2)(i) holds, and g is a polynomial of degree at most
n—1 on each of the components (=maximal open subintervals) of the open
set E.

(4) Condition (2)(i) holds, and g is a polynomial of degree at most
n—1 on each of the components of E which contains an element of S.

Proof. The equivalence of (1) and (2) follows immediately from
Theorems 1.1 and 4.1.

Let n>2. For convenience, let J(s, 1)=(—1)"{ e dgy ", where
a<s<t<b. Suppose now that (2) holds and (¢, 4) is a component of E.
Let s,te(c,d) and O<e<min{s—a,b—t}. Then a+e<s<ti<b-—ec
Since u, (S’ )=0and (—1)" eI <0on S, we have J(a + ¢, b — &) < J(s, 1) <O0.
By Lemma 4.2 with h=e¢, we obtain [®eg(;e)=J(a+¢e b—e)<J(s, 1) <O.
Using Lemma 2.4(2) and letting ¢ | 0 we find that 0= [’ eg =J(s, t). Since
(—1)"e"<0 on (s,¢], we conclude that g, (s, t]=gg "(1)—
g~ "(s)=0. Hence g " is constant on [s, t]. Since s, 1 are arbitrary,
g~V is constant on (c, d). Thus (3) holds for n=2. If n=1, we define
J(s, )=(—1)"{ ;") dgg and argue as above to conclude that (3) holds.
Clearly, (3) implies (4).

Now suppose that (4) holds. If (¢, d) is a component of E such
that (¢, d)nS#, then p,,(c,d)=0. Hence, p,, (SNE)=0. Again,
Hen(S)=0 and e™(1)=0 for 7 in S\E. Hence, J(a+¢, b—¢)=0 for all
0 <&(h—a)/2. By Lemma 4.2 with A=e¢, we have {4 eg(-;£)=0. Again, by
Lemma 2.4, letting ¢ |0 we conclude that % eg=0. Thus (2) holds. The
proof 1s complete.

If p=2, then the above theorem takes the following simpler form. Its
proof is straightforward since e = f— g, as may be easily seen.

COROLLARY 44. Letnz1l, Sc(a, b), K=K, ,, fe L,\K, ge K, and
E=E,={te(a,b): [U (1) <gl"N1)}.

Then the following three statements are equivalent.
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(1) g=P((f)
(2) () fUb)=g"b)for 1 <i<nand(—1) fUN0) < (—=1)" g™,
teS.
(1) g Iis a polynomial of degree at most n—1 on each of the
components (=maximal open subintervals) of the open set E.
(3) Condition (2)(i)} holds, and g is a polynomial of degree at most
n—1 on each of the components of E which contains an element of S.

The following result for p =1, which is analogous to Theorem 4.3, may
be proved in the same way.

THEOREM 4.5. Let n=1, Sc(a, b), K=K, ((S), feL\K, and ge kK.
Then the following four statements are equivalent.

(1) gePgl(/f)
(2) There exists ec L, satisfying

(i) el =1, e=sgn(f—g) ae., where f—g #0, el'}(h)=0 for
1<i<n, (—1)"e"1(1) <0 for 1€ S, and
(i) fﬁ eg =0.

(3) There exists ec L satisfying condition (2)(1), and g is a polyno-
mial of degree at most n—1 on each of the components of the open set E
defined by (4.1).

(4) There exists ec L satisfying condition (2)(i), and g is a polyno-
mial of degree at most n— 1 on each of the components of the open set E
which contains an element of S.

We remark that if S=(qa, ») (resp. S= /17 as defined in Section 1) then
Theorems 4.3 and 4.5 reduce to the characterization of a best
L ,-approximation from K, , [30] (resp., n-convex splines in L, of degree
at most n—1 with simple knots [31]). These chararacterizations were
obtained by using an extension of integration by parts. Our approach
based on duality leads to a simpler yet more general proof.

5. L,-APPROXIMATION BY NONDECREASING FuNCTIONS

In this section, we derive a more detailed characterization in the special
case when p=2 and n=1. Recall that K, (resp., K;) is the set of non-
decreasing (resp., convex) functions. Let B (resp, C) be the set of all
bounded (resp., continuous) functions on I (resp., on [a, b]). A function k
in K; n B is said to be the greatest convex minorant (gem) of fin B if it is
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the largest convex function which does not exceed f at any point in /.
Specifically,

k(s)=sup{h(s):he K, (1)< f(1), tel), sel

Such a unique k clearly exists. It is shown in [33, Theorem 3.1] that if
feC, then its gem is also in C. For fixed fe C and & € C with & < /, define

Elky={sel k(s)<f(s)}.

Then E(k} is open in I If k is the gcm of f, then it is shown in [33,
Theorem 3.1] that &(a) = f(a), k(a)= f(b), and, hence, E(k)<{(q, b).

PROPOSITION 5.1. Let fe C, ke K- C and k< f. Then k is the greatest
convex minorant of f if and only if the following two conditions hold.

(1) k(a)=fla), and k(b)= [(b).

(2) & is linear on each component of the open set E(k).

Proof. If k is the gcm of £, then the conditions follow by [33, Theorems
3.1 and 2.1(i1)].

Conversely, suppose that ge K, n C, g < f, and the conditions hold for g.
Also, let k be the gcm of /. We show that g =k%. Note that ¢ <k </ and,
by (1), E(g)<(a, b). Let (¢, d) be a component of E(g). Then g(c)= f(c).
Also, g(c)<k(c)< f(c). Hence, g(c)=k(c). Similarly, g(d)=k(d). Since g
is linear on (¢, d) and & is convex with g <k, we conclude that g=4 on
(c,d). On I''E(g), we have g=f and, hence, that g=k = f. The proof is
complete.

THEOREM 5.2. Let K=K, ,, the set of nondecreasing functions in L,,
felL, Kand ge K. Then g=P,(f) if and only if g is a.e. equal on I to the
derivative of the greatest convex minorant of f1'1 (the derivative exists a.e.
on I).

Proof. Since e= f~g, we have el'1= fl!] gl By Corollary 4.4 we
find that gl < 113, gl gy = f1' ) a), "' Wby = f1'Y(b), and g is constant
on each component of G = {s:gl'1(s) < f"1(s)}. By Proposition 5.1, g}
is the gem of f1'1. The proof is complete.

The above characterization was obtained in [21] for a hounded function
f by methods of optimal control. We have thus generalized this result to
any fe L, by using duality methods.
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6. L,-APPROXIMATION AND PERFECT SPLINES

In this section, we characterize a best L, -approximation to a continuous
ffrom K, | in terms of perfect splines of order n. Some interesting relations
between best L, -approximation from splines and perfect splines are
investigated in [13, 287. A perfect spline p of order n with knots at ¢,
I<igr, with a=t,<t;< --- <t,<t,,,=b is any function of the form
[13]

-1 r—1 ‘4,
pt)= Z at'+d Z (—1)"JP 1 (t—s)" "ds.

i=0 i=0 4
Note that p*” ! is continuous on (g, b) and p"(t)=(—1)" (n—1)! d for all
re(t;, t; 1), 0<i<r. We first establish a special characterization theorem
for p= 1. Let S,(¢,, 15, .., {,) denote the set of all polynomial spline func-
tions of order » on [ with simple knots at the points ¢, <ft,< --- <¢, in

(a, b). By sign changes of a function we mean strong sign changes as in
[25, p. 25, Definition 2.11].

THEOREM 6.1. Let 1<p<oo, nz1, K=K, ,(S), felL K, and ge K.
Assume that f# g a.e. on (a, b) and f—g has m < oo sign changes in (a, b).
Lete=|f—g|” "sgn(f—g) if I<p<oo. Let

E={te(a,b):(=1)e™M(1)<0}.

Then e'"1 has no more than m + n distinct zeros in (a, b).
The following two statements are equivalent.

(1) gePy(f).
(2) (i) e"Yb)=0 for 1 <i<n, and (—1)" e™(1)<0, 1€ 8.

(ii) g is a best L,-approximation to f from §,(t,, 15, .., t,), where
t, are the distinct zeros of e'™ in (a,b) and r<m+n. (For p>1, the
Sfunction g is unique since L, is uniformly convex.)

Moreover, if p=1 and [ is continuous on [a, b1, then the function g in (1)
and (2)(ii) is unique.

Proof. Let r be the number of distinct zeros of !l in (a, b). We
show that r<m+n Note that each el 1<i<n, is continuous. By
Rolle’s theorem, ¢! '! has at least r— 1 zeros in (a, b). Repeating this
argument we find that e!'! has at least r —n 41 zeros in (a, b). Now if
c<d are two zeros of e''l, then 0=el')(d)—e"'!(c)=[?e. Since e and
f—g have the same sign changes, we conclude that ¢ changes sign in
(c, d). Thus the number of sign changes of ¢ in (a, b) is at least r—n.
Since r — n < m, the result follows.
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Now we show the equivalence of (1) and (2). Let ge P, (f). Then, (2)(i)
holds by Theorems 4.3 and 4.5. Let the r zeros of ! in (a, b) be denoted
by 7, as in (2)(ii). Clearly, r<m+n. Let ty=a, t,,,=b,and I,=(1,,1,,,),
0<i<r. By Theorems 4.3 and 4.5, g is a polynomial of degree at most
n—1on [,. Hence, ge S,(t,, t5, ... t,) =S, say. Then using integration by
parts as in Lemma 4.2 and the equalities, el (a)=e! (b)Y =0, 1 <i<n, we
obtain for 0<<i<r,

b

[ et de= (=1 =1t [ @D (= 1) dr

a

= (1) (n=1)! (e")(b) — e")(1,)) =0,

It is known that (+—1¢;)","", 0<i<r, form a basis for S, [25]. Hence, the
above equation shows that |7 eh=0, for all heS,. Therefore g is a best
L ,-approximation to f from S,. We have shown that (2) holds.

Conversely, let g satisfy (2). Then, g is a polynomial of degree at most
n—1on (¢, ¢, ), 0<i<r, which are components of £ By Theorems 4.3
and 4.5, g is a best L -approximation to f from K, ,(S).

We now show the last statement. Note that S, (¢, 1., .., 7,) 1s an A4-space
and a best L,-approximation to a continuous /f from this set is unique
[19]. Hence g in (2) is unique. It remains to show that a best approxima-
tion from K=K, ,{S) is unique. Indeed, let g, ke P (f) and e =sgn(f—g).
Then (2) holds and ge S, (¢, 15, ... t,). Since e€ K°, we have [®ek <O.
Hence, by a well known argument,

b b b
I/—gl=[ etf—g)=| er<| e(f—k1< el If~kll,=1kl,.

Since | f—gl,=|f—kll,, equality holds throughout and (% ek =0. Then
arguing as in the proof of Theorem 4.3 we conclude that £ is a polynomial
of degree at most » — 1 on each component of E. Again arguing as in the
part of the above proof which shows (1) implies (2), we obtain that ke S,,,
which is an A-space. Consequently, g =k and the proof is complete.

Note that if S,=S8,(¢,, 5, -, t,), then the above theorem shows that
d,(f. K)y=d,(f S,)=d,(f. KnS,), where f and K are as in the theorem
and d,(f, A) denotes the distance of f from 4 in L,, 1 <p<oc. Now we
state a theorem involving perfect splines.

THEOREM 6.2. Let n21, K=K, ((S), fe L\K, and ge K. Assume that
f#g ae. on(a, b)and f— g has m < o sign changes in (a, b) at 5, 1 <i<m,
where s, <s,< --- <s,,. Then the following two statements are equivalent.
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(1) gePy(f)

(2) There is a perfect spline p of degree n with knots at s,, 1 <i<m,
and distinct zeros at t;,, 1 <i<r, in (a,b) with t, <t,< --- <t, such that the
Jollowing four conditions hold.

i) pa)y=p"b)=0,0<i<n— 1.
(ii) p"'=(—1)"sgn(f—g) ae. in (a,b).
(iii) p(1)<0, teS.
(iv) g is a best L -approximation to f from S,(1,, t5, .., t,).

Moreover, if [ is continuous on [a, b], then the function g in (1) and
(2)(iv) is unigue.

Remark. The perfect spline p in (2) is given by p=(—1)"e!"), where
e=sgn(f—g)).

Proof. Under the hypothesis, Theorem 6.1 applies with p=1. Define
p(y=(—=1) el"1(1), where e=sgn(f—g). Let s,=a and s,,,,=5. Then
py=(—1)"e(t)=a(—1) for re(s;, s,,,), 0<i<m, where o is the sign
of f—g on (54, 5,). With these arguments this theorem is a restatement of
Theorem 6.1. The proof is complete.

Let W, be the Sobolev space of real functions fon (a, b) such that /"~
exists and is absolutely continuous on (a, b), or, equivalently, /" exists a.e.
on {a, b) and f'"' e L,. We consider a problem on W, equipped with the
usual L, norm. Let n> 1, S be (relatively) closed in (a, #), K=K, ,(S), and
fe W, K. Then, by Theorem 3.5, P (f)# . Let ge P,(f), and assume
that f#g ae. on (¢, b) and f— g has m < oc sign changes in (aq, b) at s,,
1 <i<m, where s, <s,< --- <s,,. Then, by Theorem 6.2, g is unique, and
if po=((=1)"(f—g)"], then p, has r<m+nzerosat t, <1,< --- <t¢,in
{a, b). Let P, denote the set of all perfect splines p of degree n with knots
at s, | €i<m, zeros at t;,, 1 <i<r, and satisfying Theorem 6.2(2), condi-
tions (i) and (iii). Then p, € P,. We consider the problem of finding p, € P,
such that

s

b
| pf‘"’], all pep,

The following theorem shows that p, =p,. We let 4=max{|¢;,,—1}:
0<i<r}, where to=aand ¢,,,=0.

THEOREM 6.3. For the above problem the following hold.

() Af=gli=1flpo s =[5 pf "™, for all pe P,, and
(2) If—gly <min{4"/(4n), (n—1)" =1 A"/(n' 2} [/,
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Proof. (1) For convenience let I,=(¢;,¢,,,), 0<i<r For all peP,,
since p'(a) =p'"(b)=0, 0 <i<n— 1, integration by parts as in Lemma 4.2
yields

~

b
[ pm=g)=(=1y ']

12

b
pill(f(n Il__g(n - 1))’

___(_1)»171 Z J] p(l)(f(u—!)_gln— 1;).
i=0 Y

Since p(t,}=0, again integration by parts gives

J; p(!)(‘f(n— 1)_g(n 1)) — __J.l p(f("'—g('”)-

By Theorem 6.2, g&S,(f,,t5, ... 1,). Consequently, g""'(1)=0 for ref,
0<i<gr Also, |p"™(t)) =1 for r#1,, Hence we obtain, using the above
equalities,

A b b
Lol =[[orm—en|=|[pmr-ensir-a.

() __

Since py''=(—1)"sgn(f—g) a.e., we have

Yy

b b ob
[ posm=[ pif—g)= (=17 | If—gl=(=1)"1f-gl.

This establishes (1).

(2) By an estimate given in [14] we have ||pofl.. <47/(4n) IpS1 .,
and

ol <(n—=1)""14"/(n12") 1 pg"l -

Using (1) we obtain | f—gl, <|pol, I/™l;. From these three
inequalities and the fact that ||p§”||,. =1, we obtain (2).
The proof is complete.
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